ИНФОРМАЦИЯ о публикационной активности физико-технического факультета

№	Наименование публикации	Выходные данные (doi статьи)	Аннотация статьи	Ссылка для цитирования (Ф.И.О., название статьи, название, номер и/или выпуск, том журнала, страницы, doi статьи)
			2022 год	
1.	Gravitational field of slightly deformed naked singularities	10.1140/epjc/s10052- 022-10230-2	We derive a particular approximate solution of Einstein equations, describing the gravitational field of a mass distribution that slightly deviates from spherical symmetry. The deviation is described by means of a quadrupole parameter that is responsible for the appearance of a curvature singularity, which is not covered by a horizon. We investigate the motion of test particles in the gravWe derive a particular approximate solution of Einstein equations, describing the gravitational field of a mass distribution that slightly deviates from spherical symmetry. The deviation is described by means of a quadrupole parameter that is responsible for the appearance of a curvature singularity, which is not covered by a horizon. We investigate the motion of test particles in the gravitational field of this naked singularity and show that the quadrupole parameter affects the properties of Schwarzschild trajectories. By investigating radial geodesics, we find that no effects of repulsive gravity are present. We interpreted this result as indicating that repulsive gravity is non-linear effect.itational field of this naked	Toktarbay, S., Quevedo, H., Abishev, M., Muratkhan, A., "Gravitational field of slightly deformed naked singularities", European Physical Journal C, 2022, 82(4), 382, Q2 10.1140/epjc/s10052-022-10230-2

2.	Reaction rate of radiative p ¹² N capture	10.1016/j.nuclphysa.2 022.122543	singularity and show that the quadrupole parameter affects the properties of Schwarzschild trajectories. By investigating radial geodesics, we find that no effects of repulsive gravity are present. We interpreted this result as indicating that repulsive gravity is non-linear effect. The S-factor of radiative $p^{12}N$ capture at energies from 20 keV to 5 MeV was considered within the modified potential cluster model with forbidden states, considering the first resonance at $E_x = 2.69(5)$ MeV. It was shown that one can obtain the astrophysical S-factor based on potentials consistent with the bound state energies and asymptotic constant values. According to the theoretical total cross sections, the calculation of the $p^{12}N$ capture reaction rate is made at temperatures from 0.001 to 10 T ₉ . The calculated results for the reaction rate are approximated by analytical expression, which simplifies their use in applied research	Dubovichenko, S.B., Burkova, N.A., Zazulin, D.M., "Reaction rate of radiative p ¹² N capture", Nuclear Physics A, 2022, 1028, 122543, Q3, 10.1016/j.nuclphysa.2022.122543
3.	Reaction rate of radiative n ⁶ Li capture in the temperature range from 0.01 to 10 T ₉	10.1016/j.nuclphysa.2 022.122520	We consider the rate of radiative n ⁶ Li capture reaction in the temperature range from 0.01 to 10 T ₉ within the framework of the modified potential cluster model with forbidden states. The total cross sections are calculated for capture to the ground, and the first excited states of the ⁷ Li nucleus in the n ⁶ Li channel in the energy range from 10 meV to 5 MeV. Analytical expressions approximate the total cross-section at low energies and the reaction rate over the entire considered temperature range.	Dubovichenko, S.B., Burkova, N.A., Tkachenko, A.S., "Reaction rate of radiative n ⁶ Li capture in the temperature range from 0.01 to 10 T ₉ ", Nuclear Physics A , 2022 , 1027 , 122520 , Q3 10.1016/j.nuclphysa.2022.122520
4.	Li 6 (p,y) Be 7 reaction rate in the light of the new data of the Laboratory for Underground Nuclear Astrophysics	10.1103/PhysRevC.10 5.065806	We present new calculations of the astrophysical S factor and reaction rate for the Li6(p,γ)Be7 reaction at energies of 10 keV to 5 MeV in the framework of a modified potential cluster model with forbidden states, including low lying resonances. The astrophysical S(E) factor is compared with the available experimental data and calculations done within different models. The results for the S factor are in good agreement with the	Dubovichenko, S.B., Tkachenko, A.S., Kezerashvili, R.Y., Burkova, N.A., Dzhazairov-Kakhramanov, A.V., "Li 6 (p,γ) Be 7 reaction rate in the light of the new data of the Laboratory for Underground Nuclear Astrophysics", Physical Review C, 2022, 105(6),

			data set (for E<0.3 MeV) and calculations (for E<0.6 MeV) of the LUNA Collaboration [Phys. Rev. C 102, 052802(R) (2020)2469-998510.1103/PhysRevC.102.052802]. The recommended extrapolated zero value S(0) turned out to be 101 eV b. Using the theoretical total cross sections, the Li6(p, γ)Be7 capture reaction rate is calculated at temperatures ranging from 0.01T9 to 10T9 and compared with NACRE and NACRE II. Analytical expressions for the S factor and reaction rate are given, and the effect of low-lying resonances on the reaction rate is estimated. We suggest updating the NACRE and NACRE II databases in light of the new LUNA data and present calculations.	065806, 10.1103/PhysRevC.105.065 806
5.	Reaction Rate of p ⁶ Li Capture	10.1007/s11182-022- 02583-8	The radiative p ⁶ Li capture process has been treated within the framework of the modified potential cluster model with forbidden states at energies from 10 keV to 10 MeV with allowance for the first excitation energy resonance at excitation energies exceeding the p ⁶ Li channel threshold by 7.2 or 1.6 MeV. The experimental data on the astrophysical S-factor are well reproduced based on the interaction potentials relevant to the bound state energies and the corresponding asymptotic coefficients. Based on the total cross sections calculated at energies from 1 keV to 5 MeV, the reaction rates of p ⁶ Li radiative capture have been calculated at temperatures in the range from 0.01 to 10 T ₉ . The obtained reaction rates have been approximated by simple expressions easier to use in other works.	Dubovichenko, S.B., Burkova, N.A., Dzhazairov-Kakhramanov, A.V., Tkachenko, A.S., Samratova, A., "Reaction Rate of p ⁶ Li Capture", Russian Physics Journal , 2022 , 64(12) , ctp. 2237 – 2245 , Q4 , 10.1007/s11182-022-02583-8
6.	Radiative p ¹¹ C Capture Reaction Rate	10.1007/s11182-022- 02515-6	Within the frame of the modified potential cluster model with classification of orbital states according to Young's diagrams, the astrophysical S-factor of radiative p ¹¹ C capture was calculated. The calculations considered all scattering resonances up to 3.5 MeV and were performed at energies up to 5 MeV. On the basis of the	Dubovichenko, S.B., Burkova, N.A., Shamitova, R.R., Radiative p ¹¹ C Capture Reaction Rate, Russian Physics Journal , 2022 , 64(9) , crp . 1741–1748 , Q4 , 10.1007/s11182-022-02515-6

	1	1	1	1
			obtained total cross sections, the reaction rate was	
			calculated at temperatures from 0.01 to 10.0 T ₉ , and its	
			simple parameterization was proposed	
7.	Rapidly rotating	10.1103/PhysRevD.1	Within general relativity, we construct sequences of	Dzhunushaliev, V., Folomeev, V.,
	Dirac stars	06.024021	rapidly rotating Dirac stars consisting of a spinor fluid	Burtebayev, N.," Rapidly rotating
			described by an effective equation of state. We find the	Dirac stars", Physical Review
			physically relevant domain of stable configurations and	D, 2022, 106(2), 024021, Q1,
			calculate their principal characteristics which are	10.1103/PhysRevD.106.024021
			completely determined by the central density of the	
			spinor fluid, the mass of the nonlinear spinor field, and	
			the velocity of rotation. It is demonstrated that for a	
			certain choice of the spinor field mass, the main physical	
			characteristics of the Dirac stars are close to those that	
			are typical of rotating neutron stars.	
8.	Proca balls with	10.1103/PhysRevD.1	Within SU(2) Higgs-Proca theory, we obtain a family of	Dzhunushaliev, V., Folomeev, V.,
	angular momentum	05.016022	nontopological static solutions describing localized,	"Proca balls with angular momentum
	or flux of electric		finite-energy configurations (Proca balls). The gauge	or flux of electric field", Physical
	field		symmetry of the theory is explicitly broken by	Review D, 2022, 105(1), A32, Q1,
			introducing a vector Proca field whose components have	10.1103/PhysRevD.105.016022
			different masses. Such solutions describe particlelike	
			systems, the crucial feature of which is that they either	
			possess a nonzero total angular momentum or have a	
			flux of electric field through the plane of symmetry of	
			such objects. It is shown that the angular momentum is	
			provided by static crossed electric and magnetic fields.	
			The existence of the solutions is caused by the fact that	
			we circumvent the conditions of the no-go theorem,	
			according to which there are no stationary and axially	
			symmetric spinning excitations for the 't Hooft-Polyakov	
			monopoles, Julia-Zee dyons, sphalerons, and also	
			vortices. The dependence of some integral physical	
			quantities on the ratio of the Proca-field masses is	
			studied. It is demonstrated that the inclusion of external	
			sources (charges) enables one to obtain solutions with	
			equal Proca-field masses. We also discuss the	

			possibilities of using quarks as sources of the Proca field	
			under investigation and for treating the Proca balls as	
			glueballs in SU(2) Higgs-Proca theory.	
9.	Features of	10.1134/S106377962	A model for solving the scattering problem by an	Krassovitskiy, P.M., Pen'kov, F.M.,
) .	Scattering by a	2020447	axially symmetric potential has been developed. On the	"Features of Scattering by a
	Nonspherical	2020447	basis of this model, the interaction of the ²³⁸ U isotope	Nonspherical Potential", Physics of
	Potential		with a neutron has been studied. The correct accounting	Particles and Nuclei, 2022, 53(2),
	rotentiai		for the nonspherical shape of the uranium nucleus is	ctp. 247–250,
			accented. The optical potential has been used as the	Q4, 10.1134/S1063779622020447
			model. The optical potential has been used as the	Q4, 10.1134/31003777022020447
			potentials are shown to result in different pictures of	
			scattering, and, particularly, different resonance features	
			of scattering. One of the directions of development of	
			nuclear physics can be conditionally called extensive.	
			Progress in the use of numerical methods leads to the	
			necessity for the maximum possible account of all	
			possible aspects of nuclear interactions, already known	
			in principle. Relatively recently, the possibility of	
			considering the nonspherical form of the nuclear	
			interaction has been included in the software packages	
			that allow calculating nuclear reactions, along with other	
			necessary components [1, 2]. In the former work, the	
			calculation of the interaction is based on the use of the	
			TDHF approximation [3], in the latter, on the use of	
			classical trajectories. On the one hand, the effect of	
			nonsphericity is included in the code packages, while on	
			the other hand, the calculation of the interaction is based	
			on approximate, sometimes not even quantum-	
			mechanical, schemes. In this study, we treat new effects	
			arising from scattering by a nonspherical potential in the	
			framework of quantum mechanics. As an example, one	
			of the widely used reactions of nuclear power energetics	
			was chosen—the interaction of a neutron with the	
			nucleus of uranium-238. The interaction is described	

10. New Nuclear Physical Phenomenon: Spontaneous Nucle Synthesis	10.1134/S106377962 2020873	using an optical potential, which is one of the most popular simple potentials. For the first time, we describe a new nuclear-physical phenomenon: the emission of the lightest clusters with mass numbers from 1 to 4 from complex nuclei. The phenomenon is interpreted based on the statement that multiclusters recently experimentally discovered in the volume of nuclei spontaneously enter with each other in thermonuclear fusion reactions, forming the mentioned lightest clusters with noticeable kinetic energies in the exit channels.	Yushkov A.V., Itkis M.G., Dyachkov V.V., Zaripova Y.A, "New Nuclear Physical Phenomenon: Spontaneous Nuclear Synthesis", Physics of Particles and Nuclei, 2022, 53(2), ctp. 447–455, Q4, 10.1134/S1063779622020873
11. Phosphate Glass Detectors for Heav Ion Identification	10.3390/universe8090 474	The problem of the boundaries of the Mendeleev table of chemical elements is closely related to the understanding of the properties of nuclear matter. In this regard, the synthesis of superheavy nuclei on accelerators and the registration of their decay products are of fundamental scientific interest. The Joint Institute of Nuclear Research in Dubna (JINR) conducts research on the synthesis of superheavy nuclei on the new DC-280 cyclotron (the Factory of Superheavy Elements). As part of the development of this experiment, the possibility of using phosphate glass as a material for detectors of heavy and superheavy nuclei is being considered. This issue requires test experiments to study the recording properties of the glass at different irradiation and treatment conditions. The article presents a method for identifying heavy ions in phosphate glass detectors under various conditions by the geometric characteristics of ion tracks. The results obtained indicate the possibility of using the KNFS-3 phosphate glass detectors for registration and identification of accelerated superheavy nuclei.	Burtebayev Nassurllaa, Chernyavskiy Mikhailc, Gippius Alexeic; Kalinina Galinac; Konovalov Ninac; Nassurlla Marzhana, Nassurlla M.; Kvochkina Tatyanaa; Nassurlla Maulena; Okateva Nataliaa,; Pan Andreya; Polukhina Natalia,; Sadykov Zhakypbek "Phosphate Glass Detectors for Heavy Ion Identification", Universe, 2022, 8(9), 474, 10.3390/universe8090474

12.	Charge-changing cross sections for Ca 42-51 and effect of charged-particle evaporation induced by neutron-removal reactions	10.1103/PhysRevC.10 6.014617	Charge-changing cross sections σCC for Ca42-51 on a carbon target at around 280 MeV/nucleon have been measured. Though the existing point-proton radii rp of Ca isotopes increase as the neutron number increases, the measured σCC data show a significant decrease, which is against the expectation from a simple Glauber-like model. We found that this observed phenomenon could be attributed to the charged-particle evaporation effect induced by the neutron-removal reaction. By taking the evaporation effect into account, various σCC data sets for nuclides from C to Fe isotopes on C12 measured at around 280 MeV/nucleon are reproduced with a standard deviation of 1.6%. It is also clarified that this evaporation effect becomes negligibly small in the neutron-rich region. The evaluated relation between σCC and rp using the current model indicates that σCC data for neutron-rich Ca isotopes (A≥51) are highly sensitive to rp. This high sensitivity potentially allows one to determine the rp of very neutron-rich nuclei.	Tanaka M., Takechi M.; Homma A.; Prochazka A.; Fukuda M.; Nishimura D.; Suzuki T.; Moriguchi T.; Ahn D.S.; Aimaganbetov A.; Amano M.; Arakawa H. "Charge-changing cross sections for Ca 42-51 and effect of charged-particle evaporation induced by neutron-removal reactions", Physical Review C, 2022, 106(1), 014617, Q2, 10.1103/PhysRevC.106.014617
13.	Deuteron scattering and (d,t) reaction on ¹¹ B at an energy of 14.5 MeV	10.1016/j.nuclphysa.2 022.122448	At an energy of 14.5 MeV, the elastic and inelastic scattering of deuterons and the (d, t) reaction on 11 B nuclei were studied. Experimental angular distributions with transitions to the states of the 11 B nucleus (ground state (3/2 ⁻), 4.445 (5/2 ⁻) MeV, 6.743 (7/2 ⁻) MeV) and to the states of the 10 B nucleus (ground state (3 ⁺), 0.718 MeV (1 ⁺), 1.74 MeV (0 ⁺ , T = 1), 2.15 MeV (1 ⁺)) were analyzed by the coupled channel method. The value of the quadrupole deformation parameter β_2 = 0.80 ± 0.2 was extracted. The assumption of a direct mechanism for picking up a neutron in the reaction (d, t) made it possible to describe rather well the measured angular distributions for the states of the 10 B nucleus. The values of the spectroscopic amplitudes for the transitions to these states have been extracted. It is shown that the mechanism of 8 Be transfer both in the form of a whole	Nassurlla Maulena, Burtebayev N, Sakuta S.B, Karakozov B.K, Burtebayeva J, Khojayev R, Sabidolda A, Yergaliuly G, "Deuteron scattering and (d,t) reaction on ¹¹ B at an energy of 14.5 MeV", Nuclear Physics A, 2022, 1023, 122448, Q3, 10.1016/j.nuclphysa.2022.122448

			cluster and in the sequential transfer of two α -particles does not play a significant role. It was found that the deformation of the ^{10}B and ^{11}B nuclei noticeably affects the calculated cross sections for the (d, t) reaction.	
14.	Break-up effect of the weakly bound ⁶ Li ions scattered by ²⁰⁸ Pb target	10.31349/REVMEXF IS.68.031201	Using different potentials based on phenomenological, semi microscopic, and microscopic models, we investigated the reaction dynamics induced by the weakly bound ⁶ Li ions on a heavy mass target ²⁰⁸ Pb at sixteen energy sets ranging from 25 MeV to 210 MeV. The ⁶ Li cluster nature and its dissociation into a core (α-particle) and a valence particle (deuteron) orbiting this core was taken into consideration using the cluster folding model (CFM). The new version of Sao Paulo potential (SPP2) is also used to investigate ⁶ Li+ ²⁰⁸ Pb data. In order to reproduce the experimental data, the strength of real part of potential created using SPP and CFM should be reduced by ~ 49 % and 62 %, respectively. The data could be well reproduced using non-renormalized real cluster folding potential, if an additional dynamical polarization potential (DPP) of repulsive real surface form is introduced. The observed reduction in the strength of the real double folded and cluster folding potentials is due to the break-up effect of ⁶ Li.	Hamada, S., Burtebayev, N., Ibraheem, A.A., "Break-up effect of the weakly bound ⁶ Li ions scattered by ²⁰⁸ Pb target", Revista Mexicana de Fisica , 2022 , 68 (3), 031201 , Q3 , 10.31349/REVMEXFIS.68.031201
15.	Features of Registration of Accelerated Heavy Ions by Phosphate Glass Detectors at Different Temperatures	10.1134/S106377612 2040033	Abstract: The characteristics of heavy ion tracks in phosphate glasses after irradiation under various temperature conditions are presented. Calibration experiments are performed to obtain the dependence of the parameters of the etched tracks on the sample heating temperature and time and on the moment of heating a sample in relation to irradiation and etching. To effectively identify the ion charges, the stability of	Burtebaev N., Argynova K., Chernyavskiy M.M, Gippius A.A., Konovalova N.S, Kvochkina T.N., Nasurlla M, Okateva N.M, Pan A.N., Polukhina N.G, Sadykov, Zh. T, Shchedrina T.V., "Features of Registration of Accelerated Heavy Ions by Phosphate Glass Detectors at

			reproducing the optimum chemical etching conditions (etching chemical solution composition, concentration, etching time) is strictly observed in processing irradiated glasses. The results obtained allow us to conclude that phosphate glasses can be effectively used to detect and identify the superheavy nuclei synthesized at the Factory of Superheavy Elements of the Joint Institute for Nuclear Research (JINR).	Different Temperatures", Journal of Experimental and Theoretical Physics, 2022, 134(4), ctp. 528–532, Q4, 10.1134/S1063776122040033
16.	Search for possible fission modes at high excitation energies in Fm 254	10.1103/PhysRevC.10 5.044614	Background: Shell effects have been found to influence both the compound nuclear fission (CNF) and quasifission processes. Besides quasifission processes, which fission modes remain active at excitation energy (E?) as high as 56 MeV should be investigated. Purpose: We investigate the signatures of fission modes in Fm254 populated by O16+U238 through the mass distribution (MD) and total kinetic energy distribution (TKED). Method: The mass-Total kinetic energy distributions (M-TKED) of fission fragments of the reaction O16+U238 have been measured at two laboratory energies Elab=89 and 101 MeV. The spontaneous fission (SF) of Fm254, one-dimensional (1D) fragment MD, and two-dimensional (2D) M-TKEDs of O16+U238 have been described by the multimodal random neck rupture (MM-RNR) model. Results: Channel probabilities and the characteristics of different fission modes are obtained and discussed in detail. The enhancement observed in the mass yield (?10-2%) in the region 60-70 u for the light fragments at E-45 MeV goes away at the higher E-56 MeV. The heavy fragments of S1 and S2 modes are found to be associated with Z?53	Banerjee Tathagataa, Kozulin E.M., Burtebayev N.T, Gikal K.B, Knyazheva G.N., Itkis I.M., Novikov K.V, Kvochkina T.N, Mukhamejanov Y.S., Pan A.N, "Search for possible fission modes at high excitation energies in Fm 254", Physical Review C, 2022, 105(4), 044614, Q2, 10.1103/PhysRevC.105.044614

Study of the ¹³ C(³ He, α) ¹² C reaction at energies of 50 and 60 MeV	10.1088/1402- 4896/ac5af6	and Z?56 shells, respectively. The slope of asymmetric to symmetric fission yields (when plotted against E?) of O16+U238 is found to be similar to that of previously reported O18+Pb208. Conclusions: Analysis of 2D M-TKED data by the MM-RNR model reveals the possible presence of fission modes in O16+U238. The liquid-drop-like broad symmetric SL mode is found to peak at a lower energy than predicted by the Viola systematic, which matches mostly with that of Standard 2 mode. No signature of asymmetric quasifission is observed. The MD widths show a linear dependence with the measured energies Cross sections for the 13C(3He, α)12C reaction were measured for 12C states up to excitation energies of about 20 MeV for 3He energies of 50 and 60 MeV. An analysis of the measured angular distributions was carried out using the Coupled Channels Born Approximation method under the assumption of a direct one-step mechanism of picking up a neutron from the 13C nucleus. In these calculations, the real parts of the implemented potentials were constructed within the framework of the double folding model. This analysis made it possible to extract the values of the spectroscopic factors for the 13C g.s. → 12C g.s. (12C*) + n configurations, which were found to be in reasonable	Nassurlla Maulen, Burtebayev N, Karakozov B.K; Sakuta S.B.; Janseitov D; Nassurlla Marzhana, Alimov D; Burtebayeva J.; Sabidolda A.; Kemper K.W.; Khojayev R.; Hamada Sh, "Study of the ¹³ C(³ He, α) ¹² C reaction at energies of 50 and 60 MeV", Physica Scripta, 2022, 97(4), 045302, Q2, 10.1088/1402- 4896/ac5af6
Asymptotic	10.1140/epia/s10050-	·	Artemov S.V., Yarmukhamedov R.,
normalization coefficient for $^{12}\text{C} +$ $p \rightarrow ^{13}\text{N}$ from the ^{12}C $(^{10}\text{B}, ^{9}\text{Be})^{13}\text{N}$ reaction and the ^{12}C $(p, \gamma)^{13}\text{N}$ astrophysical S	021-00652-z	proton direct radiative capture to the 12 C (p, γ) 13 N reaction by specifying the value of the asymptotic normalization coefficient (ANC) for 12 C + p \rightarrow 13 N $_{g.s.}$. In order to do this, the differential cross section of the proton transfer in the 12C(10B,9Be)13N reaction at an energy of 41.3 MeV has been measured and analyzed through the modified distorted wave Born	Burtebayev N.b, Karakozov B.K., Ergashev F. Kh, Nassurlla Maulen, Igamov S.B., Amangeldi N.b, Morzabayev A.b, Burtebayeva J., Zhdanov V.S., Yergaliuly G., "Asymptotic normalization coefficient for ¹² C + p→ ¹³ N from the ¹² C (¹⁰ B, ⁹ Be) ¹³ N reaction and
	α) ¹² C reaction at energies of 50 and 60 MeV Asymptotic normalization coefficient for 12 C + p \rightarrow 13 N from the 12 C (10 B, 9 Be) 13 N reaction and the 12 C (p, γ) 13 N	Asymptotic normalization coefficient for ^{12}C + p \rightarrow ^{13}N from the ^{12}C (p, γ) ^{13}N astrophysical S	to symmetric fission yields (when plotted against E?) of $O16+U238$ is found to be similar to that of previously reported $O18+Pb208$. Conclusions: Analysis of $2D$ MTKED data by the MM-RNR model reveals the possible presence of fission modes in $O16+U238$. The liquid-drop-like broad symmetric SL mode is found to peak at a lower energy than predicted by the Viola systematic, which matches mostly with that of Standard 2 mode. No signature of asymmetric quasifission is observed. The MD widths show a linear dependence with the measured energies of 50 and 60 MeV an analysis of the measured for 12C states up to excitation energies of about 20 MeV for 3 He energies of 50 and 60 MeV. An analysis of the measured angular distributions was carried out using the Coupled Channels Born Approximation method under the assumption of a direct one-step mechanism of picking up a neutron from the 13C nucleus. In these calculations, the real parts of the implemented potentials were constructed within the framework of the double folding model. This analysis made it possible to extract the values of the spectroscopic factors for the $13C$ g.s. $\rightarrow 12C$ g.s. $(12C*) + n$ configurations, which were found to be in reasonable agreement with theoretical predictions. Asymptotic normalization coefficient for $^{12}C + p \rightarrow ^{13}N$ from the ^{12}C (^{10}B , ^{9}Be) ^{13}N reaction and the ^{12}C (^{10}B , ^{9}Be) ^{13}N reaction and the ^{12}C (^{10}B , ^{9}Be) ^{13}N reaction and the ^{12}C (^{10}B , ^{13}B) and the ^{12}C (^{13}B) and the modified distorted wave Born

			the reaction channel coupling and ³ He cluster transfer contributions. The value of the ANC was derived to be 1.63±0.13 fm ^{-1/2} , which was used in estimating the astrophysical S(E) factor and the reaction rate of the proton radiative capture by the ¹² C nucleus at energies of astrophysical relevance.	the ¹² C (p, γ) ¹³ N astrophysical S factor", European Physical Journal A, 2022, 58(2), 24, Q2, 10.1140/epja/s10050-021-00652-z
19.	Fluctuations of Initial State and Event-by-Event Pseudo-Rapidity Correlations in High Energy Nuclear Collisions	10.3390/universe8020 067	The initial state, about which there is usually very little direct experimental information, leads to significant fluctuations in the distribution of secondary particles and fragments. In this paper, to estimate the initial state the fragmentation parameters of interacting nuclei are analyzed. To investigate the correlations, the Hurst method is used. A detailed study of event-by-event pseudo-rapidity correlations in terms of the Hurst index, multiplicity of secondary particles and target dependence has been carried out for heavy (AgBr) and light (HCNO) targets present in the nuclear emulsion (NIKFI BR-2) using Au-197 projectiles at 10.6 A GeV. Evidences of short-range particle correlations and cluster formation in the pseudo-rapidity space are found from our analy-sis. The total ensemble of events has been divided into four classes depending on the behavior of Hurst index: uncorrelated, with short-range correlations, with long-range correlations and mixed. Events of various types differ significantly in the multiplicity of secondary particles, fragmentation of the projectile nucleus, and have significant differences in the pseudo-rapidity distribution of secondary particles.	Burtebayev, Nassurlla, Fedosimova, Anastasiya, Lebedev Igor, Dmitriyeva Elena, Ibraimova, Sayora, Bondar Ekaterina, "Fluctuations of Initial State and Event-by-Event Pseudo-Rapidity Correlations in High Energy Nuclear Collisions", Universe, 2022, 8(2), 67, Q2, 10.3390/universe8020067
20.	Single-particle and cluster modes of 1 3 C excited states of	10.1142/S021830132 2500318	The elastic and inelastic scatterings of deuterons from 13C are registered in a wide range of angles at the laboratory energy of 14.5MeV. Data on the differential cross-sections are treated within both the optical model	Urazbekov B.A.;Starastcin V.A. Karakozov B.K.; Burtebayev N.T; Janseitov D.M. Nasrulla M; Alimov D.; Valiolda D.S.; Kazhykenov S.H.;

	3.09, 8.86 and 9.89 Mev		and coupled-channels method. A new set of optical potential parameters is found. Analyses of the $d+13C$ nuclear reactions are carried out for the levels of excitation 3.089, 8.86 and 9.87MeV. The single particle $12C+n$, and cluster $9Be+\alpha$ models are applied in calculations of differential cross-sections. The calculations show that the state $3.089MeV$ is populated with the single particle configuration, while the latter bands $8.86MeV$ and $9.87MeV$ mainly have the cluster $9Be+\alpha$ excitation. The major contribution of the Hoyle state of the core $12C$ is not observed, but the cluster $9Be+\alpha$ configuration is ascertained to be the main contributor to the state $8.86MeV$	Denikin A.S.; Demyanova A.S.; Danilov A.N "Single-particle and cluster modes of 1 3 C excited states of 3.09, 8.86 and 9.89 Mev", International Journal of Modern Physics E, 2022, 2250031, Q4, 10.1142/S0218301322500318
21.	Accretion Disk Luminosity for Black Holes Surrounded by Dark Matter with Tangential Pressure	10.3847/1538- 4357/ac8804	We study the motion of test particles in the gravitational field of a Schwarzschild black hole surrounded by a spherical dark matter cloud with nonzero tangential pressure, and compute the luminosity of the accretion disk. The presence of nonvanishing tangential pressure allows us to mimic the dark matter's angular momentum, while still considering a static model, which simplifies the mathematical framework. We compare the numerical results of the influence of dark matter on the luminosity of the accretion disks around static supermassive black holes with the previously studied cases of isotropic and anisotropic pressures. We show that the flux and luminosity of the accretion disk in the presence of dark matter are different from the case of a Schwarzschild black hole in a vacuum, and highlight the impact of the presence of tangential pressures	Boshkayev K., Konysbayev T.; Kurmanov, Ye, Luongo O.; Malafarina D, "Accretion Disk Luminosity for Black Holes Surrounded by Dark Matter with Tangential Pressure", Astrophysical Journal, 2022, 936(2), 96, Q1, 10.3847/1538-4357/ac8804
22.	Accretion Disk Luminosity for Black Holes Surrounded by Dark Matter with Anisotropic Pressure	10.3847/1538- 4357/ac41d4	We investigate the luminosity of the accretion disk of a static black hole surrounded by dark matter with anisotropic pressure. We calculate all basic orbital parameters of test particles in the accretion disk, such as angular velocity, angular momentum, energy, and radius of the innermost circular stable orbit as functions of the	Kurmanov, E., Boshkayev, K., Giambò, R., Konysbayev T. Luongo O., Malafarina, D., Quevedo, H., "Accretion Disk Luminosity for Black Holes Surrounded by Dark Matter with Anisotropic

		1		D " 1 1 1
			dark matter density, radial pressure, and anisotropic	Pressure", Astrophysical
			parameter, which establishes the relationship between	Journal, 2022, 925(2), 210, Q1,
			the radial and tangential pressures. We show that the	10.3847/1538-4357/ac41d4
			presence of dark matter with anisotropic pressure makes	
			a noticeable difference in the geometry around a	
			Schwarzschild black hole, affecting the radiative flux,	
			differential luminosity, and spectral luminosity of the	
			accretion disk.	
23.	Pedagogical Model	10.3390/su14158970	The study goal was to analyze the impact of using	Jugembayeva,B., Murzagaliyeva,
	for Raising Students'		modern technologies and pedagogical innovations based	A., Revalde, G., " Pedagogical
	Readiness for the		on the University 4.0 model on the educational process	Model for Raising Students'
	Transition to		effectiveness, the development of professional	Readiness for the Transition to
	University 4.0		competencies (in humanities and engineering) and skills	University 4.0", Sustainability
			in students (abstract-logical thinking, critical thinking,	(Switzerland), 2022, 14(15), 8970,
			strategic thinking, imagination, creativity, motivation),	Q2, 10.3390/su14158970
			and learners' readiness and motivation to shift to	
			University 4.0. The experiment was conducted in the Al-	
			Farabi Kazakh National University among 464	
			undergraduate students of different academic years. All	
			the study respondents were distributed into two groups,	
			one of which did not change the training program	
			(control group), and the other studied under the program	
			grounded on the University 4.0 model using modern	
			technologies (experimental group). According to the	
			results of the survey addressed to the students of both	
			groups after the experiment ended, the indicators for all	
			parameters were higher among the individuals of the	
			experimental group. The practical significance of the	
			results obtained and further research prospects are in the	
			possibility of using the developed training program in	
			different universities and departments worldwide to	
			compare both students' readiness for the transition to	
			University 4.0 and the program's impact on educational	
			outcomes.	

24.	Natural sorbents and scientific description of their use	10.32014/2022.2518- 170X.159	Oil pollution, both in terms of scale and toxicity, is a general planetary danger. Oil and petroleum products cause poisoning, death of organisms and soil degradation. Natural self-purification of natural objects from oil pollution is a long process, especially in conditions where a low temperature regime persists for a long time. The solution of the cleaning problem the soil cover from oil pollution, the development of new and improvement of existing technologies for the restoration of oil-contaminated lands is among the priorities. Diatomites are organic sedimentary rocks, the basis of which are the remains and fragments of unicellular diatomite algae. Many of their deposits are widely represented in the Republic of Kazakhstan, the Russian Federation, China, the USA, Canada and other countries. In the methods of acid, alkaline and salt treatment, the process is aimed at weakening the microstructure of the sorbent, increasing porosity and specific surface layer. At the same time, chemical treatment contributes to a change in the features of the crystal structure, an increase in ion-exchange properties in accordance with the change in the composition of variable cations and the appearance of new active centers. Development of an invention for cleaning oil sludge and smeared soil without using a large volume of scarce fertilizer, replacing it with other plant organic residues, reduce the consumption of materials for cleaning, reduce the cost and accelerate it.	Almatova, B., Khamzina, B., Murzagaliyeva, A., Abdygalieva, A., Kalzhanova, A., "Natural sorbents and scientific description of their use", News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2022, 2(452), ctp. 49–57, Q4, 10.32014/2022.2518-170X.159
25.	Formation of energy spectra of electrons	10.1002/ctpp.2021001 74	For a weakly ionized dense plasma irradiated by fission fragments, the coupled self-consistent Boltzmann	Shapiyeva, A., Son, E., Kunakov, S., "Formation of energy spectra of
	in a dense weakly	/ '1	equations for fission fragments and electrons are	electrons in a dense weakly ionized
	ionized plasma		defined. The evolution of the energy spectra of fast	plasma generated by fission
	generated by fission		particles in a plasma is investigated on the basis of these	fragments", Contributions to Plasma
	fragments		equations. Studies of the energy distribution function of	Physics, 2022, 62(4), e202100174,
	ingilionis.		fission fragments and primary electrons for a helium-3	Q3, 10.1002/ctpp.202100174

			plasma irradiated by neutron flux, as well as their non- stationary and stationary analytical solutions, are found and analysed.	
26.	TITAN neutron imaging facility performance	10.1016/j.nima.2022. 167078	This paper presents the results of experiments on the TITAN facility to assess the quality of neutron imaging. A set of references samples developed by the Paul Scherrer Institute with the support of the IAEA was used. The results obtained demonstrated that the spatial resolution of the facility is 239µm for radiography and 358µm for tomography. The linear attenuation coefficients were determined for six materials. The maximum difference between the experimental values and the theoretical ones was 38%. The difference between the linear attenuation coefficients of neutron radiation from theoretical values is associated with the spectral dependence, due mainly to scattering and beam hardening that leads to deviation of the linear attenuation coefficient from the Beer–Lambert law. Tomography images were demonstrated that individual copper balls larger than 0.8 mm in diameter can be clearly recognized in a vial filled with balls.	Dyussambayev, D.S., Aitkulov, M.T., Shaimerdenov, A.A., Mukhametuly B, Nazarov K, Dikov A.S., Kaestner A, Barradas N. Pessoa, Sairanbayev D.S., Dikov A.S, Bazarbayev, E.M., "TITAN neutron imaging facility performance", Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1039, 167078, 10.1016/j.nima.2022.16707
27.	Study of the spatiotemporal structure of extensive air showers at high energies	10.1088/1748- 0221/17/04/C04014	In a series of works carried out at the Tien-Shan High Altitude Science Station (TSHASS), a penetrating component of extensive air showers (EAS) caused by cosmic rays (CR) with energy of the primary particle above 1 PeV was discovered. The local increase in the energy of secondary hadrons in the EAS cores in the region of the CR spectrum slope change around energy of 3 PeV, the so-called "knee". The problem of knee formation currently is one of the currently still open mysteries in astrophysics. The studies carried out at the TSHASS show that more information on the knee region can be obtained by studying the characteristics of the EAS cores. At present, a large installation with an area of several hundred square meters is being constructed at	Kalikulov, O.A., Saduyev, N.O., Shaulov S.B., Zhukov V.V., Beznosko D., Mukhamejanov Y.S., Yerezhep N.O., Baktoraz A.Y., Shinbulatov S.K., Utey, Sh., Zhumabayev A.I., Sedov, A.N., Oskomov V.V., "Study of the spatiotemporal structure of extensive air showers at high energies", Journal of Instrumentation, 2022, 17(4), C04014, Q4, 10.1088/1748-0221/17/04/C04014

28.	Analysis of continuum level density for virtual and resonance states	10.1007/s12648-020- 01994-y	the station to study the EAS cores in the "knee"region. The installation is located at an altitude of 3330 meters above sea level near the city of Almaty, Kazakhstan. We investigate the effects of resonant or virtual state and non-resonant contributions in continuum level density. In addition, we discuss the decomposed continuum level density and the M1 transition strength in the scattering problem in terms of the Green function with complex scaling method.	Odsuren, M., Khuukhenkhuu, G., Sarsembayeva, A.T., Amangeldi, N., Katō, K., "Analysis of continuum level density for virtual and resonance states", Indian Journal of Physics, 2022, 96(2), crp. 543–547, Q3, 10.1007/s12648-020-01994-y
29.	Investigation of low-lying resonances in breakup of halo nuclei within the time-dependent approach	10.1140/epja/s10050- 022-00684-z	We investigate the Coulomb breakup of 11 Be halo nuclei on a heavy target (208 Pb) from intermediate (70 MeV/nucleon) to low energies (5 MeV/nucleon) within the non-perturbative semiclassical and quantum-quasiclassical time-dependent approaches. The convergence of the computational scheme is demonstrated in this energy range including $n + ^{10}$ Be low-lying resonances in different partial and spin states. We have found a considerable contribution of the 5 / 2^+ resonance ($E_r = 1.23$ MeV) to the breakup cross section at 30 MeV/nucleon and lower, while at higher energies, the resonant states 3 / 2^- and 3 / 2^+ (with $E_r = 2.78$ and 3.3 MeV) make most visible contributions. The obtained results are in good agreement with experimental data available at 69 and 72 MeV/nucleon. Comparison with the existing theoretical calculations of other authors for 20 and 30 MeV/nucleon is also made. The developed computational scheme opens new possibilities in the investigation of the Coulomb, as well as nuclear, breakup of other halo nuclei on heavy and light targets.	Valiolda D., Janseitov D., Melezhik V., "Investigation of low-lying resonances in breakup of halo nuclei within the time-dependent approach", European Physical Journal A, 2022, 58(2), 34, Q2, 10.1140/epja/s10050-022-00684-z

30.	Investigation of fragmentation reactions of exotic nuclei in a high-energy approximation	10.32523/ejpfm.2022 060202	Studies of the properties of nuclei remote from the "valley of nuclear stability" make it possible to predict the properties of new nuclides based on systematic accumulations of data on the structure of nuclear matter. New phenomena in the behavior of nuclear matter are also being discovered. Such cores are called "exotic". The production of exotic nuclei is a multi-stage process, during which various approaches of theoretical and experimental physics are applied. One of the ways to obtain nuclei are fragmentation reactions of relatively light nuclei with high energy (more than 100 MeV), as a result of which exotic nuclei with different A and Z can be obtained. In this article, a study of the applicability of the high-energy approximation (HEA) in modeling such direct nuclear reactions was conducted and the results of comparing this approach with the exact solution of the Schrodinger equation using the example of a rectangular potential barrier and a Gaussian potential barrier are presented. Comparison of different approaches provides an understanding of the limitations of their applicability for further study of the properties of nuclei in interaction with each other and for solving the Schrodinger equation with similar potentials considered	Ismailova, A.N., Janseitov, D.M., Sharov, P.G., "Investigation of fragmentation reactions of exotic nuclei in a high-energy approximation, "Eurasian Journal of Physics and Functional Materials, 2022, 6(2), ctp. 109–117, 10.32523/ejpfm.2022060202
31.	Experimental study of fast fission and quasifission in the Ca 40 + Pb 208 reaction leading to the formation of the transfermium nucleus No 248	10.1103/PhysRevC.10 5.024617	The stability of the transfermium nucleus against fission is mainly determined by the shell correction depending on its angular momentum and excitation energy. Purpose: The study of the fast fission process of the transfermium nucleus No248 and its dependence on the interaction energy and introduced angular momentum. Methods: Mass-energy distributions of the No248 fission fragments formed in the Ca40 + Pb208 reaction at energies above the Coulomb barrier have been measured using the double-arm time-of-flight spectrometer CORSET at the Ca40-beam energies of 223, 250, and 284 MeV. Results: The contribution of the	Kozulin E.M, Knyazheva G.N., Bogachev A.A., Saiko V.V, Karpov A.V., Itkis I.M., Novikov K.V., Mukhamejanov Y.S., Pchelintsev I.V., Vorobiev I.V., Banerjee T, Cheralu, "Experimental study of fast fission and quasifission in the Ca 40 + Pb 208 reaction leading to the formation of the transfermium nucleus No 248", Physical Review C, 2022, 105(2), 024617, Q2, 10.1103/PhysRevC.105.024617

			fast fission process is determined from the calculations	
			of the driving potential, taking into account shell effects	
			and rotational energy and amounts to 39% and 61% at	
			250 and 284 MeV, respectively. The mass-energy	
			distributions of the quasifission and fast fission	
			fragments have been extracted by subtracting the mass-	
			energy matrices associated with compound nucleus	
			fission from those of all measured fissionlike events.	
			The asymmetric fragments with masses 97 and 151 u	
			were found to be the most probable in the fast fission of	
			No248. With increasing Ca40 energy from 250 to 284	
			MeV the mass distributions of the fast fission fragments	
			change slightly. Conclusions: Contrary to quasifission in	
			which the fragments are focused mainly around the	
			closed neutron or proton shells, the influence of known	
			proton or neutron shells on the asymmetric mass	
			distribution in the fast fission process was not observed.	
32.	Fission of	10.1103/PhysRevC.10	The nature of asymmetric fission of preactinides is not	Kozulin E.M; Knyazheva G.N.; Itkis
		5.014607	yet understood in detail, despite intense experimental	I.M; Itkis M.G., Mukhamejanov Y.S.;
			and theoretical studies carried out at present. Purpose:	Bogachev A.A.; Novikov K.V.;
				Kirakosyan V.V.; Kumar D; Banerjee
				T; Cheralu M; Maiti M, "Fission
				of", Physical Review C, 2022, 105(1),
				014607,
			protons less than Hg180), and Hg182 (two neutrons	Q2, 10.1103/PhysRevC.105.014607
			more than Hg180) formed in the Ar36+Sm144, Nd142,	
			and Ca40+Nd142 reactions were measured at energies	
			near and above the Coulomb barrier. Fission of Hg183	
			obtained in the reaction of Ca40 with Nd143 was also	
			investigated to see if one extra neutron could lead to	
			dramatic changes in the fission process due to the shape-	
			staggering effect in radii, known in Hg183. The	
			measurements were performed with the double-arm	
			time-of-flight spectrometer CORSET. Results: The	
			observed peculiarities in the fission fragment mass-	

energy distributions for all studied nuclei may be explained by the presence of a symmetric fission mode and three asymmetric fission modes, manifested by the different total kinetic energies and fragment mass splits. The yield of symmetric mode grows with increasing excitation energy of compound nucleus. Conclusions: The investigated properties of asymmetric fission of Hg180,182,183 and Pt178 nuclei point out the existence of well-deformed proton shell at Z≈36 and a less deformed proton shell at Z≈46. 33. GRB 190829A—A Showcase of Binary Showcase of Binar
and three asymmetric fission modes, manifested by the different total kinetic energies and fragment mass splits. The yield of symmetric mode grows with increasing excitation energy of compound nucleus. Conclusions: The investigated properties of asymmetric fission of Hg180,182,183 and Pt178 nuclei point out the existence of well-deformed proton shell at Z≈36 and a less deformed proton shell at Z≈46. 33. GRB 190829A—A Showcase of Binary Showcase of Binary Showcase of Binary GRB 190829A is the fourth-closest gamma-ray burst to date (z = 0.0785). Owing to its wide range of radio, Moradi R.; Li, Liang; Aimuratov Y.;
different total kinetic energies and fragment mass splits. The yield of symmetric mode grows with increasing excitation energy of compound nucleus. Conclusions: The investigated properties of asymmetric fission of Hg180,182,183 and Pt178 nuclei point out the existence of well-deformed proton shell at Z≈36 and a less deformed proton shell at Z≈46. 33. GRB 190829A—A Showcase of Binary Sho
The yield of symmetric mode grows with increasing excitation energy of compound nucleus. Conclusions: The investigated properties of asymmetric fission of Hg180,182,183 and Pt178 nuclei point out the existence of well-deformed proton shell at Z≈36 and a less deformed proton shell at Z≈46. 33. GRB 190829A—A Showcase of Binary Showcas
excitation energy of compound nucleus. Conclusions: The investigated properties of asymmetric fission of Hg180,182,183 and Pt178 nuclei point out the existence of well-deformed proton shell at Z≈36 and a less deformed proton shell at Z≈46. 33. GRB 190829A—A Showcase of Binary Showcase of Binary Showcase of Binary Excitation energy of compound nucleus. Conclusions: The investigated properties of asymmetric fission of Hg180,182,183 and Pt178 nuclei point out the existence of well-deformed proton shell at Z≈36 and a less deformed proton shell at Z≈46. GRB 190829A—A GRB 190829A is the fourth-closest gamma-ray burst to date (z = 0.0785). Owing to its wide range of radio, Moradi R.; Li, Liang; Aimuratov Y.;
The investigated properties of asymmetric fission of Hg180,182,183 and Pt178 nuclei point out the existence of well-deformed proton shell at Z≈36 and a less deformed proton shell at Z≈46. 33. GRB 190829A—A 10.3847/1538- GRB 190829A is the fourth-closest gamma-ray burst to Showcase of Binary 4357/ac7da3 date (z = 0.0785). Owing to its wide range of radio, Moradi R.; Li, Liang; Aimuratov Y.;
Hg180,182,183 and Pt178 nuclei point out the existence of well-deformed proton shell at $Z\approx36$ and a less deformed proton shell at $Z\approx46$. 33. GRB 190829A—A 10.3847/1538- GRB 190829A is the fourth-closest gamma-ray burst to Showcase of Binary 4357/ac7da3 date ($z=0.0785$). Owing to its wide range of radio, Moradi R.; Li, Liang; Aimuratov Y.;
of well-deformed proton shell at $Z\approx 36$ and a less deformed proton shell at $Z\approx 46$. 33. GRB 190829A—A 10.3847/1538- GRB 190829A is the fourth-closest gamma-ray burst to Showcase of Binary 4357/ac7da3 date ($z=0.0785$). Owing to its wide range of radio, Moradi R.; Li, Liang; Aimuratov Y.;
deformed proton shell at $Z \approx 46$. 33. GRB 190829A—A 10.3847/1538- GRB 190829A is the fourth-closest gamma-ray burst to Showcase of Binary 4357/ac7da3 GRB 190829A. Owing to its wide range of radio, Moradi R.; Li, Liang; Aimuratov Y.;
33. GRB 190829A—A 10.3847/1538- GRB 190829A is the fourth-closest gamma-ray burst to date (z = 0.0785). Owing to its wide range of radio, Moradi R.; Li, Liang; Aimuratov Y.;
Showcase of Binary 4357/ac7da3 date (z = 0.0785). Owing to its wide range of radio, Moradi R.; Li, Liang; Aimuratov Y.;
Late Evolution optical, X-ray, and very-high-energy observations by Rastegarnia F.; Eslamzadeh S.;
HESS, it has become an essential new source that has Sahakyan N.; Zheng, Yunlong,
been examined by various models with complementary "GRB 190829A—A Showcase of
approaches. Here, we show in GRB 190829A that the Binary Late
double prompt pulses and the three multiwavelength Evolution", Astrophysical
afterglows are consistent with the type II binary-driven Journal, 2022, 936(2), 190,
hypernova model. The progenitor is a binary composed Q1, 10.3847/1538-4357/ac7da3
of a carbon-oxygen (CO) star and a neutron star (NS)
companion. The gravitational collapse of the iron core of
the CO star produces a supernova (SN) explosion and
leaves behind a new NS (vNS) at its center. The
accretion of the SN ejecta onto the NS companion and
onto the vNS via matter fallback spins up the NSs and
produces the double-peak prompt emission. The
synchrotron emission from the expanding SN ejecta,
with energy injection from the rapidly spinning vNS and
its subsequent spindown, leads to the afterglow in the
radio, optical, and X-ray bands. We model the sequence
of physical and related radiation processes in BdHNe,
and focus on individuating the binary properties that
play the relevant roles
34. Development of a 10.3390/atmos130201 The large amount of data that are available for Andreyev, A., Kapytin, V.,
System for Detecting 83 ionospheric studies using the GPS TEC method, as well Mukasheva, S., Somsikov, V.,

Traveling Ionospheric Disturbances Based on GNSS Data		as the need to take into account complex atmospheric dynamics, create certain difficulties in automating the process of searching and recognizing traveling ionospheric disturbances generated by different sources. To automate the process of detecting wave disturbances, numerical criteria for assessing the level of the wave disturbance signal were proposed. The signal-to-noise ratio calculated by the proposed method was used as one of such criteria. This work contains a description of the developed software system that implements the proposed methodology and allows the loading of RINEX files and processing, analyzing, and visualizing total electron content data.	"Development of a System for Detecting Traveling Ionospheric Disturbances Based on GNSS Data", Atmosphere, 2022, 13(2), 183, Q3, 10.3390/atmos13020183
35. Facile Low-Cost Synthesis of Highly Photocatalitycally Active Zinc Oxide Powders	DOI 10.3389/fmats.2022.8 69493	The industrial waste can cause significant harm to human health and to the environment. Organic dyes in particular are environmentally dangerous since they may cause the death of aquatic life or contaminate the feed chain. Thus, one of the current research fields consists of the development of an inexpensive and environmentally friendly method to purify wastewater from organic contaminants. Among the others, Zinc oxide (ZnO) is considered one of the most effective photocatalysts for the decomposition of organic pollutants in water. In this work, we developed a highly efficient low-temperature and environmentally safe synthesis method to obtain photocatalytically active nanostructured ZnO by chemical precipitation from a solution. The effect of the technological conditions of synthesis on the photocatalytic properties is considered in detail, the correlation with the morphology, structural, and optical properties of the synthesized ZnO samples is determined. It was found that the maximum photocatalytic activity with respect to the decomposition of the dye rhodamine-B (RhB) is achieved for samples	Kedruk, Y.Y., Baigarinova, G.A., Gritsenko, L.V., Cicero, G., Abdullin, K.A. / Frontiers in Materials, 2022 / DOI 10.3389/fmats.2022.869493 / ISSN 22968016 / Том 931 March 2022 Номер статьи 869493 / https://www.scopus.com/record/display.uri?eid=2-s2.0-85128485422&origin=resultslist&sort=plf-f

			synthesized at NaOH molar concentration from 0.4 to 0.7 M; in this case, the sizes of crystallites along the crystallographic direction 002 reach maximum values of ~42 nm. On the contrary, the sizes of crystallites along the directions 100 and 101 decrease monotonically from 30 to 25 nm with an increase in the molar concentration of NaOH from 0.14 to 1 M. Copyright	
36.	Toward Understanding the B[e] Phenomenon. VIII. Nature and Variability of IRAS 07080+0605	DOI 10.3847/1538- 4357/ac6de0	We report the results of spectroscopic and photometric observations of the emission-line object IRAS 07080+0605 carried out in 2004-2021. We found that the object is significantly underluminous for its spectroscopic properties (T eff = 8500 ± 500 K, log g = 2.0 ± 0.5), if a strong visual attenuation by a factor of ~43 found through the spectral energy distribution modeling is not taken into account. Visual brightness variations with a stable period of 190 days but a variable amplitude of ~0.2 mag were found in the ASAS SN data and attributed to variable circumstellar extinction in the dusty disk. We also found that the observed behavior of IRAS 07080+0605 is similar to that of the protoplanetary nebula Red Rectangle. The dusty disk of IRAS 07080+0605 shows the presence of carbonaceous particles (~10%-20% of the total dust content) and polycyclic aromatic hydrocarbon emission bands. However, IRAS 07080+0605 shows no obvious signs of the refractory element depletion, which is common in post-asymptotic giant branch (AGB) dusty binaries, or of a visual nebula. Absorption-line positions vary with an amplitude of ~25 km s-1, suggesting the presence of a secondary component. Spectroscopic monitoring on a timescale from days to months is needed to search for regular variations. We conclude that IRAS 07080+0605	Khokhlov, S.A., Miroshnichenko, A.S., Zharikov, S.V.,Reva, I.V., Agishev, A.T. / Astrophysical Journal, 2022 / ISSN 0004637X /DOI 10.3847/1538-4357/ac6de0 / Том 932, Выпуск 11 June 2022 Номер статьи 36 / https://www.scopus.com/record/display.uri?eid=2-s2.0-85132986803&origin=resultslist&sort=plf-f

			is most likely a binary system with an A-type component on its way toward the post-AGB evolutionary stage, as binarity is capable of explaining most of the observed features.	
37.	Centre including eccentricity algorithm for complex networks	DOI 10.1049/ell2.12424	In this work, the authors propose a new centre including eccentricity algorithm, to define the fractal dimension of networks. The authors did the fractal analysis of the real Escherichia coli network and a model UV-flower network and confirmed that these networks are fractals. The fractal dimensions ((Formula presented.)) of these networks are calculated and (Formula presented.) = 2.485 for the real E. coli network and (Formula presented.) = 2.1 for the UV-flower network is obtained. Also, the authors defined the fractal dimensions of real social networks and compared their method with Song's, Zhang's and Zheng's methods. Furthermore, the authors' algorithm can solve situations with single-node boxes at the edges of the network and can cover networks with minimum number of boxes. The authors believe that centre including eccentricity algorithm is competitive among existing algorithms and can be used to evaluate fractal properties of complex networks.	Akhtanov, S., Turlykozhayeva, D., Ussipov, N., Ibraimov, M., Zhanabaev, Z. / Electronics Letters, 2022 / ISSN 00135194 / DOI 10.1049/ell2.12424 / Том 58, Выпуск 7, Страницы 283 - 285March 2022 / https://www.scopus.com/record/display.uri?eid=2-s2.0-85122865977&origin=resultslist&sort=plf-f
38.	Development of the High School Wave Optics Test	DOI 10.36681/tused.2022. 1123	In this paper, we described the development of the High School Wave Optics Test (HSWOT). Firstly, 56 conceptual, multiple-choice items with a single correct answer and three distractors were created. Next, we conducted an initial review of the items which resulted in reducing the item pool to 44 highest quality items. Validity evidence and feedback on the quality of these 44 items were collected through an expert survey and small-scale item try-out which included 3 subject-matter experts and 13 high school students, respectively. This	Balta, N., Japashov, N., Glamočić, D.S., Mešić, V. / Journal of Turkish Science Education, 2022 / ISSN 13046020 / DOI 10.36681/tused.2022.1123 / Том 19, Выпуск 1, Страницы 302 – 327-2022 / https://www.scopus.com/record/display.uri?eid=2-s2.0-

		T		051000510500
			process helped us to reduce our item pool to 30	85129364972&origin=resultslist&so
			technically improved conceptual items, which were	<u>rt=plf-f</u>
			eventually administered to 164 high-school students,	
			from Kazakhstan. Finally, a Rasch analysis of the	
			students' answers resulted in a 24-item scale for	
			measuring conceptual understanding in high-school	
			students. The item reliability proved to be good, person	
			reliability was acceptable, and the difficulty of items	
			was approximately person-independent. All distractors	
			were chosen by at least 5% of students and 8 distracters	
			were chosen by more than 35% of students. We could	
			conclude that HSWOT may be effectively used for	
			measuring conceptual understanding in advanced high-	
			school physics courses and for identifying students'	
			misconceptions in wave optics, in general	
			misconceptions in wave optics, in general	
39.	STEM Career	DOI	The aim of this study is to analyze secondary school	Japashov, N., Naushabekov, Z.,
	Interest of	10.0000/ 1 1100/	students' career interests in STEM subjects. This survey-	Ongarbayev, S., Postiglione, A.,
	Kazakhstani Middle	10.3390/educsci1206	based quantitative research is provided to gain insight	Balta, N. / Education Sciences, 2022
	and High School	0397	into the STEM career interests of 398 students (7–11	/ ISSN
	Students		graders), in the Almaty region of the Kazakhstan	
			Republic. Through parametric and non-parametric test	22277102 / DOI
			analysis, the relationship between students' STEM	10.3390/educsci12060397 / Том 12,
			career interest and their gender, their parents'	Выпуск 6-June 2022 Номер статьи
			occupation, parents' education, family size, school type,	397
			and school location were revealed. Results indicated	/ https://www.scopus.com/record/dis
			that, on average, participant students showed positive	play.uri?eid=2-s2.0-
			interest in STEM careers. In particular, boys' and girls'	85132273308&origin=resultslist&so
			responses were equally positive in many sub-scales of	rt=plf-f
			STEM. Additionally, great interest in STEM careers was	<u>1r-h11-1</u>
			shown by village students, whereas, for private school	
			students who are living in the city, STEM career	
			interests were the lowest in our sample. We also found	

			that students' family size, parents' education, and occupation does not relate to students' STEM career interest. Implications for STEM education in Kazakhstan are further discussed in this study.	
40.	Surface-Enhanced Raman Scattering from Dye Molecules in Silicon Nanowire Structures Decorated by Gold Nanoparticles	DOI 10.3390/ijms2305259 0	Silicon nanowires (SiNWs) prepared by metal-assisted chemical etching of crystalline silicon wafers followed by deposition of plasmonic gold (Au) nanoparticles (NPs) were explored as templates for surface-enhanced Raman scattering (SERS) from probe molecules of Methylene blue and Rhodamine B. The filling factor by pores (porosity) of SiNW arrays was found to control the SERS efficiency, and the maximal enhancement was observed for the samples with porosity of 55%, which corresponded to dense arrays of SiNWs. The obtained results are discussed in terms of the electromagnetic enhancement of SERS related to the localized surface plasmon resonances in Au-NPs on SiNW's surfaces accompanied with light scattering in the SiNW arrays. The observed SERS effect combined with the high stability of Au-NPs, scalability, and relatively simple preparation method are promising for the application of SiNW:Au-NP hybrid nanostructures as templates in molecular sensorics.	Ikramova, S.B., Utegulov, Z.N., Dikhanbayev, K.K., Savinov, V.P., Timoshenko, V.Y. / International Journal of Molecular Sciences, 2022 / ISSN 16616596 / DOI 10.3390/ijms23052590 / Том 23, Выпуск 5March-1 2022 Номер статьи 2590 / https://www.scopus.com/record/display.uri?eid=2-s2.0-85125403954&origin=resultslist&sort=plf-f
41.	Dual-band optical imaging system-integrated patch antenna based on anisotropic fractal for earth-observation CubeSats	DOI 10.1016/j.asej.2021.0 7.010	This paper presents a dual-band optical imaging system- integrated patch antenna based on an anisotropic fractal for Earth-observation CubeSats. The antenna operates at S-band frequencies. The size of the antenna is chosen to match the end face of the CubeSats. The antenna's main characteristics are studied using simulation in Computer Simulation Technology (CST) software; prototypes are developed to verify these characteristics. Double-sided Glass Epoxy Sheet FR-4 is used to	Meirambekuly, N., Temirbayev, A.A., Zhanabaev, Z.Z., Khaniyev, B.A., Khaniyeva, A.K. / Ain Shams Engineering Journal, 2022 / ISSN 20904479 / DOI 10.1016/j.asej.2021.07.010 / Том 13, Выпуск 2 March 2022 Номер статьи 101560

			develop the antenna prototype. By studying the antenna prototype, realized gain up to 4 dBi and 2.15 dBi at two resonant frequencies of the antennas with different substrate heights are obtained. Small size, low cost, dual-band, and integration with the imaging system allow achieving the entire CubeSat system's efficiency.	/ https://www.scopus.com/record/display.uri?eid=2-s2.0-85113809625&origin=resultslist&sort=plf-f
42.	Development and design of an FPGA-based encoder for NPN	DOI 10.1080/23311916.20 21.2008847	This paper describes a cryptographic protection system hardware device designed to improve data encryption and decryption performance and preserve data integrity. The cryptosystem is implemented by hardware-software method, where the encryption and decryption of data are carried out in a stand-alone FPGA device based on non-positional polynomial number system (NPN). For data encryption the next block of text to be encrypted is divided into sub-blocks and represented as separate binary polynomials and binary polynomials-keys are assigned to them, as well as irreducible polynomials (modules). Then, split blocks are calculated in parallel and a ciphertext is formed. For this purpose, the special algorithm where calculation of NPN parameters and check on irreducibility of polynomials (modules) and the program of generation of direct and inverse keys are developed and application functional is developed that implements operations in the ring of polynomials with coefficients GF(2) using an object-oriented approach. We have developed polynomial multipliers modulo sequential and parallel action (matrix multiplier) on the basis of which data encryption and decryption are performed.	Ibraimov, M.K., Tynymbayev, S.T., Skabylov, A.A., Kozhagulov, Y., Zhexebay, D.M. / Cogent Engineering, 2022 / ISSN 23311916 / DOI 10.1080/23311916.2021.2008847 / Том 9, Выпуск 12022 Номер статьи 2008847 / https://www.scopus.com/record/display.uri?eid=2-s2.0-85121568922&origin=resultslist&sort=plf-f
43.	Change of Optical Properties of Carbon-Doped	DOI	In the work, porous silicon with observed photoluminescence was made from a ptype silicon substrate doped with boron and	Darmenkulova, M.B., Aitzhanov, M.B., Zhumatova, S.A., Ibraimov,

	Silicon	10.1155/2022/132016	crystallographic orientation (100) using the method of	M.K., Sagidolda, Y. / Journal of
	Nanostructures	4	electrochemical etching in a solution containing	Nanotechnology, 2022 / ISSN
	under the Influence		H2(SiF6) (silicon hydrofluoric acid) and ethyl alcohol.	16070502 / DOI
	of a Pulsed Electron		Thin carbon films were sprayed by high-frequency	16879503 / DOI
	Beam		magnetron sputtering at room temperature onto the	10.1155/2022/1320164 / Том
			surface of porous silicon. The resulting carbon-doped	20222022 Номер статьи 1320164
			thin films of porous silicon were irradiated on a pulsed	/ https://www.scopus.com/record/dis
			electron booster and comparisons were made with	play.uri?eid=2-s2.0-
			nonirradiated films of porous silicon. To understand the	85132015460&origin=resultslist&so
			effect of carbon on the properties of porous silicon films	<u>rt=plf-f</u>
			samples were analyzed by Raman spectroscopy,	
			spectrophotometry, and scanning probe microscopy	
			(SPM). The results of the SPM showed that the	
			roughness of the samples increases after carbon doping	
			on the surface of porous silicon. Thus, for the first time,	
			experimental results were obtained on the effect of	
			irradiation on carbon-doped porous silicon obtained in a	
			solution containing hydrogen hexafluorosilicate	
			H2(SiF6) and a significant change in its optical	
			properties was shown. The results of the study showed	
			that irradiated samples of carbon-doped	
			porous silicon have better photoluminescence compared	
			to nonirradiated samples.	
44.	DEVELOPMENT	DOI	In this paper, we consider a schematic solution of the	Tynymbayev, S., Ibraimov, M.,
	OF PIPELINED	10.15587/1729-	pipeline multiplier modulo, where multiplication begins	Namazbayev, T., Gnatyuk, S. /
	POLYNOMIAL	4061.2022.251913	with the analysis of the lowest order of the polynomial	Eastern-European Journal of
	MULTIPLIER	4001.2022.231313	multiplier, which can serve as an operating unit for high-	Enterprise Technologies, 2022 /
	MODULO		speed encryption and decryption of data by hardware	ISSN
	IRREDUCIBLE		implementation of cryptosystems based on a non-	17293774 / DOI
	POLYNOMIALS		positional polynomial notation. The functional diagram	112/31141 DOI
	FOR		of the pipeline and the structure of its logical blocks, as	10.15587/1729-4061.2022.251913 /
	CRYPTOSYSTEMS		well as an example of performing the operation of	Том 1, Выпуск 4-115, Страницы 37

	T		1.	40.0000
			multiplying polynomials modulo, are given. The correct	- 43-2022
			functioning of the developed circuit was checked by	/ https://www.scopus.com/record/dis
			modeling in the Vivado Design Suite computer-aided	play.uri?eid=2-s2.0-
			design for the implementation of the multiplication	85125722068&origin=resultslist&so
			device on the development/ evaluation kit Artix-7 based	<u>rt=plf-f</u>
			on the Spartan 6 field-programmable gate array series by	
			Xilinx. The effectiveness of the proposed hardware	
			pipeline multiplier in modulo is confirmed by the	
			Verilog Testbench timing diagram implemented for the	
			evaluation kit Artix-7 field-programmable gate array. In	
			addition, the developed pipelined modulo multiplier	
			takes no more than 0.02 % of the resources of the used	
			field-programmable gate array for a given length of	
			input data. Compared to the matrix	
			multiplication method, a pipelined modulo multiplier	
			can handle a large data stream without waiting for the	
			result of the previous multiplication step. The modulo	
			pipelined multiplier depth depends on the bit width of	
			the input data. The developed pipeline device can be	
			used in digital computing devices operating in a	
			polynomial system of residue classes, as well as for	
			high-speed data encryption in blocks of cipher	
			processors operating on the basis of a non-positional	
			polynomial number system	
45.	Designing of multi-	DOI	One of the major driving factors in the shifting of the	Sharma, H., Imanbayeva, A. /
	objective optimal		present grid paradigm to an active grid network is the	Scientific Reports, 2022 / ISSN
	virtual power plant	10.1038/s41598-022-	reliability and resiliency of the utility network. With	
	model for reliability	16389-8	hefty investment in the distribution network protection	20452322 / DOI
	enhancement in		and maintenance, the reliability of the feeders is	10.1038/s41598-022-16389-8 / Том
	radial network: a		considerably enhanced; however, large numbers of	12, Выпуск 1December 2022 Hoмер
	case study of Indian		outages are still occurring every year which caused	статьи 13382
	1		major production loss to the manufacturing sector. In	
	power sector		major production loss to the manufacturing sector. In	/ https://www.scopus.com/record/dis

			this paper, the role of the solar grid-based Virtual Power Plant (VPP) is evaluated in the state power utility for the reliability enhancement and cost minimization using a multi-objective model based on MILP optimization. A 90 bus industrial feeder having automatic reclosers, DER, and DSM is selected on which the MCS method is utilized for computing reliability indices using the utility reliability parameters. The value of reliability indices such as EENS is declined by 68% by utilizing the VPP scenario. These values of this reliability index are fed into the multi-objective model for cost minimization. After running the optimization, the results reveal that the operational and the annual energy cost are reduced by 61% and 55% respectively which advocates the VPP implementation in the utility network. Both modes of the Virtual Power Plant such as grid-connected and autonomous mode have been discussed in detail. Lastly, the results of the developed model with MILP are compared with the proprietary derivative algorithm, and it is found that the proposed MILP is more costeffective. The overall results advocate the VPP implementation in the utility grid as the economical advantage is provided to both utility and the consumers in terms of reduction in EENS and energy charges respectively.	play.uri?eid=2-s2.0- 85135427331&origin=resultslist&so rt=plf-f
46.	Features of determining the optical bandgap of amorphous nanosized composite TiO2:Ag films	DOI 10.1364/JOT.89.0000 52	The study results of optical properties of amorphous nanosized TiO2:Ag composite films with the structure of an amorphous TiO2 matrix with inclusions of isolated Ag nanoparticles are presented. The TiO2:Ag films were obtained by ion-plasma high-frequency magnetron cosputtering of a polycrystalline TiO2 and Ag target. The films were 40-50 nm thick, and the maximum silver	Peshaya, S.L., Prikhodko, O.Yu., Mukhametkarimov, Ye.S., Turmanova, K.N., Kudryashov, V.V. / Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2022 / ISSN

			concentration reached 9.0 at.%. The fundamental absorption band edge was analyzed for different possible absorption laws. It is shown that, in TiO2 and TiO2:Ag films, the edge of the fundamental absorption band is formed mainly due to indirect allowed optical transitions (the quadratic absorption law), and this absorption law does not change with increasing silver concentration. The optical bandgap in TiO2:Ag films depends on the Ag concentration and is determined by the degree of order in the amorphous matrix.	10709762 / DOI 10.1364/JOT.89.000052 / Том 89, Выпуск 1, Страницы 52 - 57January 2022 / https://www.scopus.com/record/display.uri?eid=2-s2.0- 85127606246&origin=resultslist&sort=plf-f
47.	Accretion Disk Luminosity for Black Holes Surrounded by Dark Matter with Tangential Pressure	DOI 10.3847/1538- 4357/ac8804	We study the motion of test particles in the gravitational field of a Schwarzschild black hole surrounded by a spherical dark matter cloud with nonzero tangential pressure, and compute the luminosity of the accretion disk. The presence of nonvanishing tangential pressure allows us to mimic the dark matter's angular momentum, while still considering a static model, which simplifies the mathematical framework. We compare the numerical results of the influence of dark matter on the luminosity of the accretion disks around static supermassive black holes with the previously studied cases of isotropic and anisotropic pressures. We show that the flux and luminosity of the accretion disk in the presence of dark matter are different from the case of a Schwarzschild black hole in a vacuum, and highlight the impact of the presence of tangential pressures.	Boshkayev, K., Konysbayev, T., Kurmanov, Y., Luongo, O., Malafarina, D. / Astrophysical Journal, 2022 / ISSN 0004637X / DOI 10.3847/1538-4357/ac8804 / Том 936, Выпуск 21 September 2022 Номер статьи 96 / https://www.scopus.com/record/display.uri?eid=2-s2.0- 85137764656&origin=resultslist&sort=plf-f
48.	Accretion Disk Luminosity for Black Holes Surrounded by Dark	DOI 10.3847/1538- 4357/ac41d4	We investigate the luminosity of the accretion disk of a static black hole surrounded by dark matter with anisotropic pressure. We calculate all basic orbital parameters of test particles in the accretion disk, such as angular velocity, angular momentum, energy, and radius of the innermost circular stable orbit as functions of the	Kurmanov, E., Boshkayev, K., Giambò, R., Malafarina, D., Quevedo, H. / Astrophysical Journal, 2022 / ISSN

	Matter with Anisotropic Pressure		dark matter density, radial pressure, and anisotropic parameter, which establishes the relationship between the radial and tangential pressures. We show that the presence of dark matter with anisotropic pressure makes a noticeable difference in the geometry around a Schwarzschild black hole, affecting the radiative flux, differential luminosity, and spectral luminosity of the accretion disk.	0004637X / DOI 10.3847/1538-4357/ac41d4 / Том 925, Выпуск 21 February 2022 Номер статьи 210 / https://www.scopus.com/record/display.uri?eid=2-s2.0-85125834460&origin=resultslist&sort=plf-f
49.	Localized surface plasmon resonance phenomenon in Ag/Au-WO3-x nanocomposite thin films	DOI 10.1016/j.tsf.2022.13 9387	The localized surface plasmon resonance was investigated in composite thin films based on amorphous sub-stoichiometric tungsten oxide (WO _{3-x}) matrix and noble metal nanoparticles, such as silver (Ag), gold (Au), and their alloy (Ag/Au). The films were prepared by radio-frequency magnetron sputtering of a combined target consisting of lemon-colored tungsten trioxide powder and Ag and/or Au pellets. It was found that the mean size of nanoparticles for all composite thin films according to the results of transmission electron microscopy is less than 5 nm. The obtained films demonstrate tunable plasmon absorption band. The position of the localized surface plasmon resonance peak was experimentally observed at 435, 494, and 582 nm for Ag-WO _{3-x} , Ag/Au-WO _{3-x} and Au-WO _{3-x} composite thin films, respectively. Blueshift of the localized surface plasmon resonance band in contrast with the results of Mie calculations for Ag-WO _{3-x} film was explained by possible formation of oxide shell on the surface of Ag nanoparticles.	Prikhodko, O., Dosseke, U., Nemkayeva, R., Guseinov, N., Mukhametkarimov, Y. / Thin Solid Films, 2022/ ISSN 00406090 / DOI 10.1016/j.tsf.2022.139387 / Том 7571 September 2022 Номер статьи 139387 / https://www.scopus.com/record/display.uri?eid=2-s2.0-85134432659&origin=resultslist&sort=plf-f
50.	Size-Dependent Phonon-Assisted	DOI	Anti-Stokes photoluminescence (ASPL), which is an up- conversion phonon-assisted process of the radiative	Sekerbayev, K., Taurbayev, Y., Mussabek, G., Utegulov, Z.,

	Anti-Stokes	10.3390/nano1218318	recombination of photoexcited charge carriers, was	Timoshenko, V.Y. / Nanomaterials,
	Photoluminescence	4	investigated in methylammonium lead bromide (MALB)	2022 / ISSN
	in Nanocrystals of		perovskite nanocrystals (NCs) with mean sizes that	20704001 / DOI
	Organometal		varied from about 6 to 120 nm. The structure properties	20794991 / DOI
	Perovskites		of the MALB NCs were investigated by means of the	10.3390/nano12183184 / Том 12,
			scanning and transmission electron microscopy, X-ray	Выпуск 18September 2022 Номер
			diffraction and Raman spectroscopy. ASPL spectra of	статьи 3184
			MALB NCs were measured under near-resonant laser	/ https://www.scopus.com/record/dis
			excitation with a photon energy of 2.33 eV and they	play.uri?eid=2-s2.0-
			were compared with the results of the	85138702312&origin=resultslist&so
			photoluminescence (PL) measurements under non-	<u>rt=plf-f</u>
			resonant excitation at 3.06 eV to reveal a contribution of	
			phonon-assisted processes in ASPL. MALB NCs with a	
			mean size of about 6 nm were found to demonstrate the	
			most efficient ASPL, which is explained by an enhanced	
			contribution of the phonon absorption process during the	
			photoexcitation of small NCs. The obtained results can	
			be useful for the application of nanocrystalline	
			organometal perovskites in optoelectronic and all-optical	
			solid-state cooling devices.	
51.	Luminescent carbon	DOI	Luminescent O, N-containing carbon nanoparticles (O,	Diyuk, N.V., Keda, T.Y., Zaderko,
	nanoparticles	10 1007/-12204 022	N-CNPs) were synthesized by the one-step method.	A.N., Kutsevol, N.V., Lisnyak, V.V.
	immobilized in	10.1007/s13204-022- 02536-0	Their surface chemistry was studied by TPD-MS, TGA,	Mussabek, G. / Applied Nanoscience
	polymer hydrogels	02330-0	and 1H NMR. Different groups, carboxyl, imide, and	(Switzerland), 2022 / ISSN
	for pH sensing		amide groups, were found. The small (O, N)-CNPs	21905509 / DOI
			dispersed in water have a high quantum yield of 0.26	21903309 / DOI
			with respect to quinine sulfate in 0.05 M sulfuric acid.	10.1007/s13204-022-02536-0 / Том
			We investigated the change in the fluorescence emission	12, Выпуск 8, Страницы 2357 -
			intensity using a titration of a colloidal solution of (O,	2365August 2022
			N)-CNPs with unimolar solutions of KOH, HCl, or	/ https://www.scopus.com/record/dis
			NaCl. The quenching efficiency strongly depends on the	play.uri?eid=2-s2.0-
			pH and is less dependent on the content of indifferent	

			electrolytes. The small (O, N)-CNPs showed high fluorescence emission intensity in a neutral buffer in a Krebs solution. Besides, they showed a pronounced pH-dependent fluorescence quenching at acidic pH levels. These small (O, N)-CNPs are promising materials for biomedical applications as fluorescent probes with high acidic sensitivity because of high stability and high intensive fluorescence in a complex water matrix. With this aim, polymer hybrid hydrogels for wound dressings were modified with (O, N)-CNPs. Some of the obtained composites are potentially effective for fluorescence pH-sensitive testing and the screening monitoring of wound healing.	85133234405&origin=resultslist&sort=plf-f
52.	Photo- and Radiofrequency- Induced Heating of Photoluminescent Colloidal Carbon Dots	DOI 10.3390/nano1214242 6	Nitrogen- and oxygen-containing carbon nanoparticles (O, N-CDs) were prepared by a facile one-step solvothermal method using urea and citric acid precursors. This method is cost-effective and easily scalable, and the resulting O, N-CDs can be used without additional functionalization and sample pretreatment. The structure of O, N-CDs was characterized by TEM, AFM, Raman, UV-vis, and FTIR spectroscopies. The obtained O, N-CDs with a mean diameter of 4.4 nm can be easily dispersed in aqueous solutions. The colloidal aqueous solutions of O, N-CDs show significant photothermal responses under red-IR and radiofrequency (RF) irradiations. The as-prepared O, N-CDs have a bright temperature-dependent photoluminescence (PL). PL/PLE spectral maps were shown to be used for temperature evaluation purposes in the range of 30–50 °C. In such a way, the O, N-CDs could be used for biomedicine-related applications such	Mussabek, G., Zhylkybayeva, N., Lysenko, I., Lisnyak, V.V., Lysenko, V. / Nanomaterials, 2022 / ISSN 20794991 / DOI 10.3390/nano12142426 / Том 12, Выпуск 14July 2022 Номер статьи 2426 / https://www.scopus.com/record/dis play.uri?eid=2-s2.0- 85137339349&origin=resultslist&so rt=plf-f

			as hyperthermia with simultaneous temperature estimation with PL imaging.	
53.	Preparation and characterization of F-, O-, and N-containing carbon nanoparticles for pH sensing	DOI 10.1007/s13204-021- 01725-7	A novel sensing system was designed for pH measurements based on the enhanced and quenched photoluminescence (PL) and UV–Vis absorption of the diluted water solutions of F-, O-, and N-containing carbon nanoparticles (FON-CNPs). These FON-CNPs were solvothermally synthesized, dissolved, ultrafiltrated, and separated by thin-layer chromatography. The total fluorine content in them was found to be 1.2–1.5 mmol per gram. Their TGA showed a total weight loss of 52.7% because of the thermal decomposition and detachment of the surface groups and the partial burning of the functionalized shell on the carbon core at temperatures below 1200 °C. TEM and Raman data confirmed the presence of graphitic structures in the carbon core. From the results of ATR FTIR and UV–Vis spectroscopies, we showed that a carbon shell incorporates different functional groups covering the carbon core. The surface groups of the carbon shell include carboxyl, phenolic, and carbonyl groups. Heterocyclic N-containing and amino groups and trifluoromethyl groups supporting the hydrophobicity were also found. We suggested the possible reasons for the pH responses obtained with the sensing system considering them dependent on the de-protonation of functional groups with pH change.	Lisnyak, V.V., Zaderko, A.N., Mariychuk, R., Zhylkybayeva, N., Tananiko, O.Y. / Applied Nanoscience (Switzerland), 2022 / ISSN 21905509 / DOI 10.1007/s13204-021-01725-7 / Том 12, Выпуск 3, Страницы 795 - 803March 2022 / https://www.scopus.com/record/display.uri?eid=2-s2.0- 85101098654&origin=resultslist&sort=plf-f
54.	Application of the Photoacoustic Approach in the Characterization of	DOI 10.3390/nano1204070 8	A new generation of sensors can be engineered based on the sensing of several markers to satisfy the conditions of the multimodal detection principle. From this point of view, photoacoustic-based sensing approaches are essential. The photoacoustic effect relies on the	Isaiev, M., Mussabek, G., Lishchuk, P., Lacroix, D., Lysenko, V. / Nanomaterials, 2022 / ISSN 20794991 / DOI

	Nanostructured		generation of light-induced deformation (pressure)	10.3390/nano12040708 / Том 12,
	Materials		perturbations in media, which is essential for sensing	Выпуск 4February-2 2022 Номер
			applications since the photoacoustic response is formed	статьи 708
			due to a contrast in the optical, thermal, and acoustical	/ https://www.scopus.com/record/dis
			properties. It is also particularly important to mention	play.uri?eid=2-s2.0-
			that photoacoustic light-based approaches are flexible	85125570136&origin=resultslist&so
			enough for the measurement of thermal/elastic	rt=plf-f
			parameters. Moreover, the photoacoustic approach can	
			be used for imaging and visualization in material	
			research and biomedical applications. The advantages of	
			photoacoustic devices are their compact sizes and the	
			possibility of on-site measurements, enabling the online	
			monitoring of material parameters. The latter has	
			significance for the development of various sensing	
			applications, including biomedical ones, such as	
			monitoring of the biodistribution of biomolecules. To	
			extend sensing abilities and to find reliable measurement	
			conditions, one needs to clearly understand all the	
			phenomena taking place during energy transformation	
			during photoacoustic signal formation. Therefore, the	
			current paper is devoted to an overview of the main	
			measurement principles used in the photoacoustic setup	
			configurations, with a special focus on the key physical	
			parameters.	
55.	Study of the	DOI	This work reports about the study of the structure of	Ryaguzov, A.P., Assembayeva, A.R.,
	influence of		films of amorphous diamond-like carbon modified with	Myrzabekova, M.M., Nemkayeva,
	palladium	10.1016/j.diamond.20	palladium nanoparticles and synthesized on silicon (100)	R.R., Guseinov, N.R. / Diamond and
	nanoparticles on the	22.109125	substrates (a-C <pdx>). Results of Raman studies</pdx>	Related Materials, 2022 / ISSN
	structure of DLC		indicate the change in the ratio of sp2/sp3 sites	,
	films synthesized on		depending on the Pd concentration in the carbon films. It	09259635 / DOI
	silicon (100)		was found that palladium nanoparticles affect the	10.1016/j.diamond.2022.109125 /
	substrates		formation of carbon bonds and increase the number of	Том 126June 2022 Номер статьи

			sp2 sites, and at concentrations of more than 1 at.%, the film structure becomes graphite-like. In addition, atomic force microscopy methods revealed the effect of palladium on the surface morphology of a-C <pdx> films and non-uniform distribution of electron density. The size of the particles which form the structure of the a-C <pdx> films was estimated by using the "threshold method of grains analysis" program.</pdx></pdx>	109125 / https://www.scopus.com/record/display.uri?eid=2-s2.0- 85131421026&origin=resultslist&sort=plf-f
56.	Development of a System for Detecting Traveling Ionospheric Disturbances Based on GNSS Data	DOI 10.3390/atmos130201 83	The large amount of data that are available for ionospheric studies using the GPS TEC method, as well as the need to take into account complex atmospheric dynamics, create certain difficulties in automating the process of searching and recognizing traveling ionospheric disturbances generated by different sources. To automate the process of detecting wave disturbances, numerical criteria for assessing the level of the wave disturbance signal were proposed. The signal-to-noise ratio calculated by the proposed method was used as one of such criteria. This work contains a description of the developed software system that implements the proposed methodology and allows the loading of RINEX files and processing, analyzing, and visualizing total electron content data.	Andreyev, A., Kapytin, V., Mukasheva, S., Somsikov, V./ Atmosphere, 2022, 13(2), 183 / DOI 10.3390/atmos13020183 / ISSN 20734433 / Том 13, Выпуск 2February 2022 Hoмер статьи 183 / https://www.scopus.com/record/display.uri?eid=2-s2.0-85124953811&origin=resultslist&sort=plf-f
57.	The Influence of the Initial Charge Compaction on the Radiation Synthesis of YAG:Ce Ceramics	DOI 10.1007/s11182-022- 02508-5	It is shown that the morphology of the YAG:Ce ceramic samples synthesized in the field of high-energy electron flux depends on the degree of compaction of the initial charge of Y, Al, Ce oxides. The fraction of the YAG phase is higher in the samples of ceramics formed from the compacted charge. The spectral luminescence characteristics of the samples, synthesized from a	Ermolayev, A.V., Tulegenova, A.T., Lisitsyna, L.A., Korzhneva, T.G., Lisitsyn, V.M. / Russian Physics Journal, 2022, 64(9), стр. 1692–1696 / DOI 10.1007/s11182-022-02508-5 / ISSN 10648887 / Том 64, Выпуск 9, Страницы 1692 - 1696January 2022

			mixture of the same compositions, do not depend on the compaction degree.	/ https://www.scopus.com/record/display.uri?eid=2-s2.0-85123073465&origin=resultslist&sort=plf-f
58.	Toward Understanding the B[e] Phenomenon. IX. Nature and Binarity of MWC645	DOI 10.3847/1538- 4357/ac87a1	We present the results of optical and near-IR spectroscopy and multicolor photometry of the emission-line star MWC 645, which exhibits the B[e] phenomenon. The presence of positionally variable absorption lines of a cool star detected for the first time indicates that the object is a binary system. Using a combination of the photometric and spectroscopic data as well as the Gaia EDR3 distance (D = 6.5 ± 0.9 kpc), we disentangled the components' contributions and estimated their surface temperatures and luminosities (18, 000 ± 2000 K and 4250 ± 250 K, log L/L ⊙ = 4.0 ± 0.5 and 3.1 ± 0.3 for the hot and cool components, respectively). Quasi-cyclic short-period (months) and long-period (~4 yr) photometric variations were detected in both optical and near-IR regions, and are most likely due to variable circumstellar extinction. Our analysis suggests that MWC 645 is a member of the FS CMa group. The object's properties can be described by an evolutionary model of a close binary system that currently undergoes a nonconservative mass transfer between intermediate-mass stars (e.g., 7 M ⊙ + 2.8 M ⊙).	Nodyarov, A.S., Miroshnichenko, A.S., Khokhlov, S.A., Omarov, C.T., Kokumbaeva, R.I. / Astrophysical Journal, 2022, 936(2), 129 / DOI 10.3847/1538-4357/ac87a1 / ISSN 0004637X / Том 936, Выпуск 21 September 2022 Номер статьи 129 / https://www.scopus.com/record/display.uri?eid=2-s2.0-85138200946&origin=resultslist&sort=plf-f
59.	Performance simulation of eco- friendly solar cells	https://doi.org/10.314 89/2022No2	Large-scale deployment of the perovskite photovoltaic technology using such high-performance materials as CH ₃ NH ₃ PbI ₃ may face serious environmental issues in the future. Implementation of perovskite solar cell based	Yerezhep, D., Aldiyarov, A., Golikov, O., Tokmoldin, N. Performance simulation of eco- friendly solar cells based on

	based on		on Sn could be an alternative solution for	CH ₃ NH ₃ SnI ₃ // Eurasian Physical
	CH ₃ NH ₃ SnI ₃		commercialisation. This paper presents the results of a	Technical Journal, 2022, 19(2), crp.
			theoretical study of a lead-free, environmentally-friendly	58–64
			photovoltaic cell using CH ₃ NH ₃ SnI ₃ as a light-	https://doi.org/10.31489/2022No2
			absorbing layer. The characteristics of a photovoltaic	
			cell based on perovskite were modelled using the	
			SCAPS-1D program. Various thicknesses of the	
			absorbing layer were analysed, and an optimised device	
			structure is proposed, demonstrating a high power	
			conversion efficiency of up to 28% at ambient	
			temperature. The analysis of the thicknesses of the	
			CH ₃ NH ₃ SnI ₃ absorbing layer revealed that at a	
			thickness of 500 nm, performance is demonstrated with	
			an efficiency of 27.41 %, a fill factor of 85.92 %, a short	
			circuit current density of 32.60 mA/cm ² and an open-	
			circuit voltage of 0.98 V. The obtained numerical results	
			indicate that the CH ₃ NH ₃ SnI ₃ absorbing layer may be a	
			viable replacement for the standard materials and may	
			form the basis of a highly efficient technology of the	
			environmentally-friendly perovskite solar cells.	
			environmentarry-mentary perovskite solar cens.	
60.	In Silico	https://doi.org/10.339	Perovskite solar cells represent one of the recent success	Omarova, Z., Yerezhep, D.,
	Investigation of the	<u>0/cryst12050699</u>	stories in photovoltaics. The device efficiency has been	Aldiyarov, A., Tokmoldin, N. In
	Impact of Hole-		steadily increasing over the past years, but further work	Silico Investigation of the Impact of
	Transport Layers on		is needed to enhance the performance, for example,	Hole-Transport Layers on the
	the Performance of		through the reduction of defects to prevent carrier	Performance of CH ₃ NH ₃ SnI ₃
	CH ₃ NH ₃ SnI ₃		recombination. SCAPS-1D simulations were performed	Perovskite Photovoltaic Cells //
	Perovskite		to assess efficiency limits and identify approaches to	Crystals, 2022, 12(5), 699
	Photovoltaic Cells		decrease the impact of defects, through the selection of	
			an optimal hole-transport material and a hole-collecting	https://doi.org/10.3390/cryst1205069
			electrode. Particular attention was given to evaluation of	9
			the influence of bulk defects within light-absorbing	
			CH ₃ NH ₃ SnI ₃ layers. In addition, the study demonstrates	
			CITATIANITA Tayora. III addition, the study demonstrates	

			the influence of interface defects at the $TiO_2/CH_3NH_3SnI_3$ (IL1) and $CH_3NH_3SnI_3/HTL$ (IL2) interfaces across the similar range of defect densities. Finally, the optimal device architecture $TiO_2/CH_3NH_3SnI_3/Cu_2O$ is proposed for the given absorber layer using the readily available Cu_2O hole-transporting material with $PCE = 27.95\%$, $FF = 84.05\%$, $V_{OC} = 1.02$ V and $J_{SC} = 32.60$ mA/cm², providing optimal performance and enhanced resistance to defects.	
61.	Natural Material Shungite as Solid- Phase Extraction Sorbent for the Extraction of Red Synthetic Dye Ponceau 4R from Tap Water, Wine, and Juice	https://doi.org/10.100 7/s12161-021-02162- 6	A natural nanomaterial shungite (NMSh) was used as solid-phase extraction (SPE) absorbent and showed excellent absorption capacity for red synthetic dye. NMSh is a mixture of various carbon allotropes, which is used as an inexpensive and effective sorbent in various scientific and food research around the world. NMSh is not just amorphous carbon, but the mixture of various carbon allotropes; shungite has been categorized as a promising material for the development of nanotechnology, which is of great interest for the development of science and technology. This fact served as the basis for selecting shungite as a material to create sorbents that will be used in the preparation of samples for analysis. For the determination of the red synthetic dye Ponceau 4R in samples of wine and juice, an SPE method with NMSh packed cartridge combined with HPLC–UV detection was developed to determine Ponceau 4R in tap water, wine, and juice samples. Particle size and mass of NMSh sorbent were studied, and a comparison between activated and non-activated NMSh was made for use as a sorbent. Under optimized conditions, the extraction of analyte was 99.3% for wine	Alham, A., Ibraimov, A., Alimzhanova, M., Mamedova, M. Natural Material Shungite as Solid- Phase Extraction Sorbent for the Extraction of Red Synthetic Dye Ponceau 4R from Tap Water, Wine, and Juice // Food Analytical Methods, 2022, 15(3), ctp. 707–716 https://doi.org/10.1007/s12161-021- 02162-6

			and 94.3% for juice with relative standard deviations (RSD) during the day equal to 0.18% for juice and 0.15% for wine. The results showed that this method is very sensitive and effective for the determination of food dyes in very complex matrices and in a low concentration. Based on the study was developed the method to determine the dyes in alcoholic and non-alcoholic drinks	
62.	Investigation of CO2 Extract of Portulaca oleracea for Antioxidant Activity from Raw Material Cultivated in Kazakhstan	https://doi.org/10.115 5/2022/6478977	Medicinal plants remain as an important resource in the fight against many diseases, especially in developing countries. Antioxidants are substances capable of delaying, retarding, and preventing the oxidation of lipids or substances that delay or prevent free radical reactions during lipid oxidation. Natural antioxidants such as ascorbic acid, tocopherol, phenolic compounds, and flavonoids are a safe alternative to chemical antioxidants. In present work, results of antioxidant activity of raw materials from the cultivated plant Portulaca oleracea are presented. The extraction time was optimized to 780 minutes; the yield of extractive substances was 1.25% in the production of CO2 extract under subcritical conditions. For the first time, the antioxidant activity of Portulaca oleracea CO2 extract was determined by the amperometric method. Gas chromatography-mass spectrometry (GC-MS) chemical analysis of Portulaca oleracea CO2 extract dissolved in hexane revealed 37 components, including a complex mixture of aldehydes, alkanes, alkenes, esters, diterpenes, steroids, vitamin E, and carbohydrates. The investigation results showed that the Portulaca oleracea CO2 extract was promising for pharmaceutical, cosmetic, and food industries and had great potential for	Tleubayeva, M.I., Abdullabekova, R.M., Datkhayev, U., Ishmuratova, M.Yu., Alimzhanova, M.B., Kozhanova, K.K., Seitaliyeva, A.M., Zhakipbekov, K.S., Iskakova, Zh.B., Serikbayeva, E.A., Flisyuk, E.V. Investigation of CO2Extract of Portulaca oleracea for Antioxidant Activity from Raw Material Cultivated in Kazakhstan // International Journal of Biomaterials, 2022, 2022, 6478977 https://doi.org/10.1155/2022/647897 7

			the prevention and treatment of diseases caused by oxidative stress.	
63.	Modern Analytical Methods for the Analysis of Pesticides in Grapes: A Review	https://doi.org/10.339 0/foods11111623	Currently, research on the determination of pesticides in food products is very popular. Information obtained from research conducted so far mainly concerns the development of a methodology to determine the content of pesticides in food products. However, they do not describe the content of the pesticide used in viticulture in the resulting product. Over the past decade, this study has examined analytical methodologies for assessing pesticide residues in grapes. Scopus, Web of Science, Science Direct, PubMed, and Springer databases were searched for relevant publications. The phrases "pesticides" and "grapes" and their combinations were used to search for articles. The titles and annotations of the extracted articles have been read and studied to ensure that they meet the review criteria. The selected articles were used to compile a systematic review based on scientific research and reliable sources. The need to study the detection of pesticide residues in grapes using advanced analytical methods is confirmed by our systematic review. This review also highlights modern methods of sample preparation, such as QuEChERS, SPME, PLE, dLLME, and ADLL-ME, as well as the most used methods of separation and identification of pesticides in grapes. An overview of the countries where residual grape pesticide amounts are most studied is presented, along with the data on commonly used pesticides to control pests and diseases in grape cultivation. Finally, future possibilities and trends in the analysis of pesticide residues in grapes are discussed by various analytical methods.	Syrgabek, Y., Alimzhanova, M. Modern Analytical Methods for the Analysis of Pesticides in Grapes: A Review // Foods, 2022, 11(11), 1623 https://doi.org/10.3390/foods111116 23

64.	Miniaturized solid- phase microextraction coupled with gas chromatography- mass spectrometry for determination of endocrine disruptors in drinking water	https://doi.org/10.101 6/j.fochx.2022.10034 5	A simple and rapid method based on miniaturized solid-phase microextraction (mini-SPME) followed by gas chromatography—mass spectrometry was developed to identify eight endocrine disruptors (atrazine, diethylstilbestrol, hexestrol, estrone, estradiol, ethinylestradiol, norgestrel, and megestrel) in drinking water samples. Extraction parameters was optimized and further analyses was performed using them. The optimum temperature for the determination of endocrine disruptors in water was 80 °C; the optimum extraction and preincubation times were 60 and 20 min, respectively. The studied linear range of endocrine disruptors was $10.0-1000~\mu g~mL^{-1}$. The limit of detection ranged from $0.020~to~0.087~\mu g~mL^{-1}$. The correlation coefficient (r²) was $0.96-0.99$. This research introduces a novel method for detecting analytes at extremely low concentrations, as well as the possibility of combining several detection technologies to give high-accuracy qualitative and quantitative determination of endocrine disruptors in aqueous samples.	Alimzhanova, M., Mamedova, M., Ashimuly, K., Alipuly, A., Adilbekov, Y. Miniaturized solid-phase microextraction coupled with gas chromatography-mass spectrometry for determination of endocrine disruptors in drinking water // Food Chemistry: X, 2022, 14, 100345 https://doi.org/10.1016/j.fochx.2022. 100345
65.	Influence of the method of air-fuel mixture supply on the main characteristics of heat and mass transfer processes	https://doi.org/10.113 4/S086986432201009 7	Computational experiments were carried out using three-dimensional computer modeling methods to determine the effect of various burner arrangements and the method of fuel mixture supply on the main characteristics of heat and mass transfer processes (flow aerodynamics, temperature fields, concentration fields of combustion products) throughout the entire volume of the combustion chamber of a power boiler and at its outlet. It is shown that the use of vortex burners with a swirl of the air mixture flow allows improvement of metabolic processes in the combustion chamber and reduces emissions of harmful substances into the	Askarova, A.S., Messerle, V.E., Bolegenova, S.A., Maksimov, V. Yu., Bolegenova, S.A., Nugymanova, A.O. Influence of the method of air-fuel mixture supply on the main characteristics of heat and mass transfer processes // Thermophysics and Aeromechanics, 2022, 29(1), ctp. 107–124 https://doi.org/10.1134/S0869864322010097

			atmosphere both during traditional fuel combustion and at reduced boiler load (partial shutdown of burners).	
66.	A Review of the Energy Potential of Residual Biomass for Coincineration in Kazakhstan	https://doi.org/10.339 0/en15176482	Although it has access to hydrocarbon reserves, Kazakhstan has developed a strategy for the transition to a low-carbon economy, which should include the use of renewable energy sources. In this framework, the use of biomass from waste could have the potential to reduce emissions from traditionally fueled energy generation, as well as adding value to the generated waste, which also improves waste management according to the principles of a circular economy. The analysis of the resources and energy potential from residual biomass in Kazakhstan presents an annual production of 37.26×10^6 tons of residual biomass, which could be capable of producing an energy potential of 466.74 PJ/year, little more than half to the total production from all the installed power plants in the country. Agricultural, animal and municipal solid waste are available to produce energy in Kazakhstan based on combustion technologies; however, animal waste and agricultural are the main potential sources with 61.02% and 38.34% of the theoretical total biomass potential energy analyses, respectively. Considering that 80% of Kazakhstan's electricity generation comes from coal-fired plants, energy from agriculture could be co-fired for the gradual replacement of coal with biomass in operational power plants, without substantially increasing costs or infrastructure investments, thereby making the transition to a low-carbon economy and renewable energy sources in the country easier.	Askarova, A., Zamorano, M., Martín-Pascual, J., Nugymanova, A., Bolegenova, S. A Review of the Energy Potential of Residual Biomass for Coincineration in Kazakhstan // Energies, 2022, 15(17), 6482 https://doi.org/10.3390/en15176482

67.	Computational modeling of pollutants in furnaces of pulverized coal boilers of the republic of Kazakhstan	https://doi.org/10.101 6/j.energy.2022.1248 26	Ecological situation in the world has forced to close coal plants. And renewable energy sources, which are characterized by volatility, mayn't be enough to provide countries with energy, so transition to "green energy" will be difficult. Kazakhstan's energy industry will gradually switch from coal to gas so that emissions correspond to European standards, but coal will remain the main fuel for the time being due to its cheapness. In this regard power units of energy plants require creating and mastering of new environmentally friendly coal technologies to reduce the negative impact on the environment. Pollutants formation depends on fuel type and conditions of burning. Thus a detailed study of the heat-mass transfer processes in combustion system is relevant. In proposed work, computational modelling of pollutants formation during burning of low-grade coal (A~40%) was carried out. Proposed work is aimed at defining of the new physical, mathematical and chemical models, which were adapted and implemented into the CFD code. The results of the study showed a good correspondence of the numerical experiment with natural data. The proposed model can be useful in any energy systems running on low-grade fuel to obtain relevant data that contribute to the control of environmental pollution.	Askarova, A., Georgiev, A., Bolegenova, S., Beketayeva M., Maximov, V., Bolegenova, S. Computational modeling of pollutants in furnaces of pulverized coal boilers of the republic of Kazakhstan // Energy, 2022, 258, 124826 https://doi.org/10.1016/j.energy.2022 .124826
68.	Radiation-stimulated adsorption processes on the surface of beryllium oxide	http://dx.doi.org/10.1 5826/chimtech.2022.9 .1.06	The paper presents the study results of photo and gamma radiation effect on the beryllium oxide (BeO) surface properties. Photoadsorption studies of O2 on BeO by the methods of infrared (IR) spectroscopy and manometry with a change in the temperature of preliminary annealing from 473 to 1073 K show that samples subjected to preliminary training at 473 K are most	Tusseyev, T.T., Danlybaeva, A.K., Raimkul, S.S., Kiykabaeva, A.A., Doszhanov, O.M. Radiation- stimulated adsorption processes on the surface of beryllium oxide // Chimica Techno Acta, 2022, 9(1), 20229106

			active. The maximum of adsorption activity on γ-irradiated beryllium oxide is observed on the samples annealed at 673 K before the irradiation. The maximum of paramagnetic centers (PMCs) is also observed on samples annealed at this temperature. Comparison of electron paramagnetic resonance (EPR) and adsorption studies shows that absorption of H2 and O2 leads to the destruction of paramagnetic centers. It is assumed that, upon irradiation, adsorption centers with electron and hole modes are formed on the surface of BeO.	http://dx.doi.org/10.15826/chimtech. 2022.9.1.06
69.	The Effect of the Cryosurface Materials on the Cryoemission Parameters of Some Gases	https://doi.org/10.100 7/s10909-021-02648- x	The results obtained are an experimental confirmation of the effect of the cryosurface material on the process of the onset of cryocondensation radiation during the condensation of gases such as nitrous oxide, ethanol, and methanol. It is shown that regardless of the material of the optical system of the surface, whether it is a metal mirror or a mirror covered with a film of the cryocondensates of a dielectric having an intrinsic dipole moment or with a zero-dipole moment while maintaining the thermodynamic parameters and formation conditions, the cryoradiation process will exist in the visible spectral range. This fact is a constructive proof of selection and calculation of low-temperature surfaces in specific conditions of their functioning.	Korshikov, E., Sokolov, D. The Effect of the Cryosurface Materials on the Cryoemission Parameters of Some Gases // Journal of Low Temperature Physics, 2022, 206(3-4), crp. 199–209 https://doi.org/10.1007/s10909-021-02648-x
70.	Convective mass transfer of a binary gas mixture in an inclined channel	https://doi.org/10.100 2/zamm.201900197	The influence of a slope angle on the stability of mechanical equilibrium in binary gaseous mixtures has been investigated both experimentally and numerically. Experimental studies have shown that the angle of inclination of the channel relative to the horizontal plane can be critical in convective mixing. When this angle is reached, the system performs a kinetic transition from an	Kossov, V., Fedorenko, O., Zhakebayev, D., Mukamedenkyzy, V., Kulzhanov, D. Convective mass transfer of a binary gas mixture in an inclined channel // ZAMM Zeitschrift fur Angewandte

			unstable to a stable state, that is, to diffusion. The problem is solved by the Lattice Boltzmann method using the two-dimensional Navier-Stokes equation, the continuity equation and the equation of concentration. Calculations are performed to study binary mixtures with different angles of inclination of the diffusion channel with respect to the vertical axis. Due to the increase of the angle of inclination, the convective flow intensity decreases. Numerical data on the structure fields of concentrations at different times depending on the increase of the slope angle are obtained.	Mathematik und Mechanik, 2022, 102(1), e201900197 https://doi.org/10.1002/zamm.20190 0197
71.	Multicomponent mixing on the "diffusion – convection" transition boundary at elevated pressures	https://doi.org/10.108 8/1742- 6596/2150/1/012014	An experimental and theoretical study of three-component mixing at the "diffusion – convection" boundary at elevated pressures is carried out. It is shown that the pressure dependence of the dimensionless parameter α , defined as the ratio of the experimental values of the component concentrations to those calculated by the Stefan-Maxwell equations, has characteristic regions due to the interaction of structural formations moving towards each other, in which a transition from one critical motion to another occurs. Within the framework of a linear analysis of the stability of a ternary gas mixture for a vertical circular cylinder channel, it is shown that scale perturbations determining the transition from one type of flow to another correspond to a certain value of the perturbation mode n and the critical Rayleigh numbers.	Kossov, V.N., Fedorenko, O.V., Zhaneli, M., Mukhatova, K. Multicomponent mixing on the "diffusion – convection" transition boundary at elevated pressures // Journal of Physics: Conference Series, 2022, 2150(1), 012014 https://doi.org/10.1088/1742-6596/2150/1/012014
72.	Plasma ignition of solid fuels at thermal power plants. Part 1. Mathematical	https://doi.org/10.113 4/S086986432202013 5	One of the promising ignition technologies is the plasma thermochemical preparation of pulverized coal for combustion using plasma-fuel systems (PFS). This technology allows increasing the efficiency of fuel application and improving the environmental	Messerle, V.E., Ustimenko, A.B., Tastanbekov, A.K. Plasma ignition of solid fuels at thermal power plants. Part 1. Mathematical modeling of plasma-fuel system //

	modeling of plasma-		performance of thermal power plants, as well as	Thermophysics and Aeromechanics,
	fuel system		eliminating fuel oil, used traditionally to ignite boilers	2022, 29(2), crp. 295–310
	ruci system		and stabilize combustion of a pulverized coal flame.	2022, 29(2), crp. 275–310
			This paper presents the numerical results on ignition of a	https://doi.org/10.1134/S0869864322
				020135
			pulverized coal flame in a PFS. The plasma-fuel system	
			is designed for oil-free start-up of boilers and	
			stabilization of flame combustion and this is a	
			pulverized coal burner equipped with a plasma torch. In	
			addition to plasma torch electric power and ash content	
			in coal, one of the main operating parameters of PTS,	
			which ensures fuel ignition, is concentration of coal dust	
			in the aeromixture, which can be varied over a wide	
			range. The conditions of fuel mixture ignition in the PFS	
			were determined for three above-mentioned operating	
			parameters of PFS using the PlasmaKinTherm program,	
			which combines kinetic and thermodynamic methods for	
			calculating the processes of motion, heating, and	
			thermochemical transformations. The calculations were	
			performed for a cylindrical PFS with a diameter of 0.2 m	
			and a length of 2 m. The coal consumption was 1000	
			kg/h. The conditions of fuel mixture ignition in the PFS	
			were studied depending on the plasma-torch power (20–	
			100 kW), coal concentration in the fuel mixture in the	
			range from 0.4 to 1.8 kg of coal per 1 kg of air, and also	
			for three different values of coal ash content (20, 40, and	
			70 %). The main regularities of the process of plasma	
			thermochemical preparation of fuel for combustion have	
			been revealed.	
73.	A comprehensive	https://doi.org/10.101	A 19-reactions H ₂ oxidation chemical kinetic model has	Wang, H., Slavinskaya, N ., Haidn,
	kinetic modeling	6/j.fuel.2022.123705	been optimized with uncertainty quantification. The	O. A comprehensive kinetic
	study of hydrogen		uncertainties of the reaction rate constant (RRC)	modeling study of hydrogen
	combustion with		parameters have been first estimated based on the	combustion with uncertainty
L	l	l	I *	<u> </u>

	uncertainty		recommended direct measurements and review works.	quantification // Fuel, 2022, 319,
	quantification		This deterministic approach was further combined with	123705
	quantification		the probabilistic treatment of RRC to decrease the	
			uncertainty intervals and to extend the temperature	https://doi.org/10.1016/j.fuel.2022.12
			validity range for RRCs with the highest uncertainty	<u>3705</u>
			level, for which two quantities, discrepancy measures	
			and uncertainty contributions, were introduced in the	
			developed framework. Monte Carlo simulations with	
			randomly sampled RRCs and polynomial regression	
			were performed to develop the response surface with	
			high coefficients of determination to be utilized in the	
			model optimization procedure. 10 key channels were	
			selected for further optimization, and the probability	
			density functions were calculated on the basis of	
			discrepancy measures for 4 channels to reduce their	
			large uncertainty intervals. The training set was	
			collected from carefully validated measured data	
			following experiments of shock tubes, rapid	
			compression machines, jet stirred reactors, plug flow	
			reactors, and premixed laminar flames. Inconsistent	
			experimental targets were fixed and excluded from	
			considerations. The optimized chemical kinetic model	
			demonstrates good predicting ability for the	
			H ₂ combustion experimental data from both the training	
			set and the conditions outside the tested range (blind	
			modeling).	
			moderning).	
74.				
75.	The effect of	DOI	In this work, kinetic characteristics of the electron drift are	Maiorov S.A.,
	magnetic field on	10.1063/5.0078333	calculated by the Monte Carlo method in two inert gases (l	He Kodanova S. K., Bastykova N.
	diffusion and drift of		and Xe) at an electric field strength $E/N = 30\ 100\ Td$, and	Kh., Omiraliyeva, G.K.,
	electrons in helium		magnetic field induction up to 1 T at a gas density of 1017	
	and xenon		atoms per cm3. The results of calculations of the electron of	drift

76.	Investigation of the influence of single-particle oscillations on the transport properties of dense plasma	DOI 10.1002/ctpp.2022000 18	characteristics in helium and xenon in constant and uniform electric and magnetic fields are presented. The methods of numerical simulation are used to obtain the main characteristics of the electron drift and the diffusion coefficients. It is shown that accounting for the magnetic field leads to a decrease in the drift velocity and mean energy of the electrons. The results of the calculation can be used for the analysis of experimental data on electron drift and diffusion in crossed electric and magnetic fields. Transport properties of the ionic component of dense plasmas are investigated on the basis of effective potentials taking into account the presence of an external alternating electrical (laser) field. The latter generates single-particle oscillations of electrons and significantly changes the screening of the test charge in plasma. Therefore, transport coefficients become non-monotonic function of the oscillation frequency. The results for the diffusion and viscosity coefficients are presented. These transport coefficients are computed using the generalized Coulomb logarithm within the Chapman-Enskog model for the fluid description. It was revealed that the oscillation of the electrons in the alternating external field with the frequency (Formula presented.) (with ω_p being plasma frequency) results in the significant reduction of the	Physics of Plasmas 29, 043502 (2022) IF 2.023, Q2 Scopus - сведения о документе - The effect of magnetic field on diffusion and drift of electrons in helium and xenon Kodanova S.K. Issanova M. K., Omiraliyeva G.K., Ramazanov T. S. CONTRIBUTIONS TO PLASMA PHYSICS, 2022, IF 1.563, Q3 DOI10.1002/ctpp.202200018 Scopus - сведения о документе - Investigation of the influence of single-particle oscillations on the transport properties of dense plasma
			ionic diffusion and viscosity coefficients. In contrast, at (Formula presented.), the ionic diffusion and viscosity coefficients are larger compared to the case without the external field impact.	
77.	Carbon nanoparticles	DOI	Carbon nanoparticles were synthesized using a 13.56 MHz	Batryshev, D., Utegenov, A.,
	characteristics	10.1002/ctpp.2021002	radiofrequency (RF) discharge of Ar/CH ₄ plasma in pulsed	Zhumadilov, R., Akhanova N.,
	synthesized in	38	mode to control the nanoparticle size. Experimental	Orazbayev S., Ussenkhan S.,
	pulsed		observations have shown that the size of carbon nanoparticles	Jiashu Lin, Kazuo Takahashi,
	radiofrequency		increases with the frequency of the pulse signal. It was also	Kodanova, S., Bastykova, N.,

	discharge and their effect on surface hydrophobicity		found that by using a frequency modulated pulsed RF signal it is possible to control the size of carbon nanoparticles in the 40–70 nm range, where the plasma-enhanced chemical vapour deposition method is the main mechanism for nanoparticle growth. Transmission electron microscopy image analysis showed two types of nanoparticles, some of which are an agglomerate of nanoparticles with an amorphous structure, while the others are nanometre-sized with crystalline structures. Changes in the modulation frequency and synthesis time help to obtain different films with different values of the contact angle.	Gabdullin, M., Ramazanov, T. Contributions to Plasma Physics, (2022) (https://doi.org/10.1002/ctpp.20 2100238) IF 1.563, Q3 Scopus - сведения о документе - Carbon nanoparticles characteristics synthesized in pulsed radiofrequency discharge and their effect on surface hydrophobicity
78.	Ring dust structures in a weak inhomogeneous magnetic field	DOI 10.1002/ctpp.2021002 54	Experimental results on the influence of an external inhomogeneous magnetic field created in the end areas of the coil on the dynamics of a ring-shaped dust structure in a stratified glow discharge in argon are presented. The rotational behaviour of the ring was investigated at different magnetic fields in the range up to 16 mT. It was found that the direction of rotational motion of dust particles in an inhomogeneous magnetic field depends on the direction of its radial component. A theoretical model was proposed to explain the experimental observations.	Kodanova, S., Abdirakhmanov, A., D'yachkov, L., Bastykova, N., Ramazanov, T. Contributions to Plasma Physics, 2022 IF 1.563, Q3 Scopus - сведения о документе - Ring dust structures in a weak inhomogeneous magnetic field
79.	Effective interaction potentials and the scattering cross sections of the Lorentzian dense semiclassical plasma particles	DOI 10.1016/j.physleta.20 22.128313	Modified versions of the dynamic effective interaction potentials for the charged particles in dense semiclassical plasma are presented. These models consider dynamic screening, quantum mechanical effect of diffraction and particle velocity distribution function with non-Maxwellian suprathermal tail. Such distributions are well described by the so-called kappa-distribution and can be used in different space plasma and in some plasma installations where the suprathermal particles take place. Based on this modified	Seisembayeva, Madina M. Shalenov, Erik O.; Kossymkyzy, Zhansayaa Turekhanova; Jumagulov M.N.; Ramazanov T.S.; Dzhumagulova, K N. Physics Letters, Section A: General, Atomic and Solid State

			dynamic interaction potentials the differential scattering cross sections of the electron-electron and electron-ion collisions were investigated. The obtained results for different values of the density parameter, coupling parameter and spectral index κ are presented.	Physics Том 44730 September 2022 Номер статьи 128313 Scopus - сведения о документе - Effective interaction potentials and the scattering cross sections of the Lorentzian dense semiclassical plasma particles
80.	Investigation of self- generated magnetic field and dynamics of a pulsed plasma flow	DOI 10.1088/2058- 6272/ac5018	Due to the growing interest in studying the compression and disruption of the plasma filament in magnetic fusion devices and Z-pinches, this work may be important for new developments in the field of controlled thermonuclear fusion. Recently, on a coaxial plasma accelerator, we managed to obtain the relatively long-lived (a1/4300 µs) plasma filaments with its self-magnetic field. This was achieved after modification of the experimental setup by using high-capacitive and low-inductive energy storage capacitor banks, as well as electrical cables with low reactive impedance. Furthermore, we were able to avoid the reverse reflection of the plasma flux from the end of the plasma accelerator by installing a special plasma-Absorbing target. Thus, these constructive changes of the experimental setup allowed us to investigate the physical properties of the plasma filament by using the comprehensive diagnostics including Rogowski coil, magnetic probes, and Faraday cup. As a result, such important plasma parameters as density of ions and temperature of electrons in plasma flux, time dependent plasma filament's azimuthal magnetic field were measured in discharge gap and at a distance of 23.5 cm from the tip of the cathode. In addition, the current oscillograms and I-V characteristics of the plasma accelerator were obtained. In the experiments, we also observed the charge separation during the acceleration of	Tazhen, Aigerim; Dosbolayev, Merlan; Ramazanov, Tlekkabul Plasma Science and Technology Том 24, Выпуск 5Мау 2022 Номер статьи 055403 Scopus - сведения о документе - Investigation of self-generated magnetic field and dynamics of a pulsed plasma flow

			plasma flow via oscillograms of electron and ion beam currents.	
81.	Preliminary Study of the Solid-State Pulsed Plasma Thruster Model with Graphite as a Propellant	DOI 10.1134/S1063780X2 2030047	Abstract: A preliminary test of the solid-state pulsed plasma thruster (PPT) model with graphite as a solid propellant to correct and maintain a small satellite's orbit was carried out. The structural, electrical and thrust characteristics of the solid-state PPT were experimentally investigated using the plasma emission spectrum, Rogowski coil, and ballistic pendulum. Furthermore, the formation dynamics of the pulsed plasma was investigated by using a high-speed CMOS Phantom VEO710S camera.	Dosbolayev M.K.; Igibayev, Zh. B.; Tazhen A.B.; Ramazanov T.S. Plasma Physics Reports Том 48, Выпуск 3, Страницы 263 - 270March 2022 Scopus - сведения о документе - Preliminary Study of the Solid-State Pulsed Plasma Thruster Model with Graphite as a Propellant
82.	Methods of theoretical calculations and of experimental researches of the system atomic hydrogen – metal	DOI 10.1016/j.ijhydene.20 21.03.065	All the main directions of energy development suggest or already implement the use of hydrogen. In addition, the interaction of low-energy hydrogen atoms with metals is also of considerable interest, both from the point of view of fundamental research and in connection with the operation of large tokamaks and thermonuclear reactors. The paper presents a literature review of the features of the interaction of hydrogen with metals. It is shown that metal-hydrogen reactions, which lead to the formation of metal hydrides, are considered as a special type of such interaction. Modern methods of experimental study of heterogeneous reactions, topochemistry of metal - hydrogen reactions, dependences of the rate of interaction on pressure and temperature are considered, models of surface processes occurring during the interaction of hydrogen with a metal are discussed. A kinetic method for studying the mechanism of interaction of atomic hydrogen with hydride-forming metals is proposed.	Zolotarenko, Al.D. Veziroglu A.; Veziroglu T.N.; Shvachko N.A.; Pomytkin A.P.; Schur D.V.; Gavrylyuk N.A.; Ramazanov T.S.; Akhanova N.Y.; Gabdullin M.T. International Journal of Hydrogen EnergyTom 47, Выпуск 11, Страницы 7310 - 73275 February 2022 Scopus - сведения о документе - Methods of theoretical calculations and of experimental researches of the system atomic hydrogen - metal
83.	The use of ultrapure molecular hydrogen	DOI	COVID-19 is a disease caused by the SARS-CoV virus. It stands for severe acute respiratory syndrome, which affects	Zolotarenko, An.D.; Veziroglu A; Veziroglu T.N.; Shvachko

	enriched with atomic hydrogen in apparatuses of artificial lung ventilation in the fight against virus COVID-19	10.1016/j.ijhydene.20 21.03.025	the lungs. The process of replication and progression of the COVID-19 virus causes the formation of an excessive amount of reactive oxygen species and inflammation. Many studies have been carried out that have demonstrated that hydrogen has strong anti-inflammatory properties. It reduces hypotension and other symptoms by reducing inflammation and oxidative stress. Oxygen mixture, enriched with Hydrogen, - helps to reduce the resistance of the respiratory tract and frees up access to the pulmonary alveolus, which improves the penetration of oxygen into the lungs. Since hydrogen is an antioxidant, it helps to reduce the burden on the immune system, helps to maintain the body's health and its ability to quickly recover. When electrolysers are used to produce an oxygen-hydrogen mixture, alkaline mist and other impurities can enter the patient's lungs and cause poisoning and chemical burns. For this reason, the use of atomic hydrogen obtained from metal hydride sources for ventilation of the lungs will be more effective for treating COVID-19 than a molecular hydrogen-oxygen mixture from an	N.A.; Pomytkin A.P.; Gavrylyuk N.A.; Schur D.V.; Ramazanov T.S.; Gabdullin M.T. International Journal of Hydrogen EnergyОткрытый доступТом 47, Выпуск 11, Страницы 7281 - 72885 February 2022 Scopus - сведения о документе - The use of ultrapure molecular hydrogen enriched with atomic hydrogen in apparatuses of artificial lung ventilation in the fight against virus COVID-19
			electrolyzer. A functional diagram of a metal hydride source of atomic hydrogen to an artificial lung ventilator is shown. It is possible to create a series of hydrogen storage tanks of various capacities.	
84.	Study of the electron-atom collisions in dense semiclassical plasma of noble gases	DOI 10.1017/S002237782 2000071	We present the effective optical potential of the interaction of an electron with an atom in dense semiclassical plasma of noble gases. This potential takes into account the collective screening effect and the quantum mechanical effect of diffraction. The influence of diffraction and screening effects on the characteristics of electron-atom collisions was investigated. Scattering phase shifts decrease with increase of the de Broglie wave. The electron-atom momentum-transfer cross-section at Formula Presented tends to the data obtained earlier with a neglecting of the diffraction effect.	Dzhumagulova, Karlygash N.; Shalenov, Erik O. Tashkenbayev, Yerkhan A.; Ramazanov, Tlekkabyl S. Journal of Plasma Physics Том 88, Выпуск 11 February 2022 Номер статьи 905880119 Scopus - сведения о документе - Study of the

85.	The Effect of Non-Thermal Atmospheric Pressure Plasma Treatment of Wheat Seeds on Germination Parameters and α- Amylase Enzyme Activity	DOI 10.1109/TPS.2022.31 45831	This contribution presents the results of a study of the germination rate and growth parameters of wheat seeds after atmospheric pressure surface coplanar dielectric barrier discharge (DBD) plasma treatment. The germination rate and biometric parameters such as the root, shoot length, mass of the seedlings, and the α -amylase enzyme activity were studied at different plasma exposure time. The seed coat surface wettability and morphology were determined by apparent contact angle measurement and scanning electron microscope (SEM) analysis. Seed surface disinfection and the presence of filamentous fungi have also been investigated at different discharge parameters. It is shown that the optimal plasma treatment duration for increasing the growth parameters and enhancing the enzymatic activity is 5-15 s. It was found that the longer plasma exposure requires complete sterilization of the seed surface from pathogens, compared to the optimal treatment time for high germination. Based on the obtained results, the possible mechanisms of the positive effect of plasma treatment on the enhanced germination of wheat seeds are discussed.	electron-atom collisions in dense semiclassical plasma of noble gases Ussenov Y.A.; Akildinova, Ainur; Kuanbaevich, Bissenbaev Amangeldy; Serikovna, Kistaubayeva Aida; Gabdullin, Maratbek; Dosbolayev, Merlan; Daniyarov, Talgat;Ramazanov, Tlekkabul IEEE Transactions on Plasma Science Том 50, Выпуск 2, Страницы 330 - 3401 February 2022 Scopus - сведения о документе - The Effect of Non-Thermal Atmospheric Pressure Plasma Treatment of Wheat Seeds on Germination Parameters and α-Amylase Enzyme Activity
86.	Electron-atom interactions in dense semiclassical helium plasma	DOI 10.1063/5.0073657	The effective optical potential of the electron-atom interaction in dense semiclassical helium plasma is derived. The Hartree-Fock, polarization, and exchange potentials consider the collective screening effect and the quantum-mechanical effect of diffraction. It was shown that when three components of the optical potential act together the characteristics of electron-helium scattering change significantly in comparison with results based on their separate involvement. The influence of the quantum-mechanical effect of diffraction was also discussed.	Dzhumagulova K.N.; Shalenov E.O.; Tashkenbayev Y.A.; Ramazanov T.S. Physics of Plasmas Том 29, Выпуск 11 January 2022 Номер статьи 012101 Scopus - сведения о документе - Electron-atom

gas are Syzganbayeva S., Ara J., Askaruly A., Ashikbayeva A. d of Tkachenko I. Arkhipov Y. Collective phenomena in a quasi-classical electron fluid within the interpolational self- consistent method of moments
gas are Syzganbayeva S., Ara J., Askaruly A., Ashikbayeva A. d of Tkachenko I. Arkhipov Y. Collective phenomena in a quasi-classical electron fluid within the interpolational self- so that five consistent method of moments
Askaruly A., Ashikbayeva A. d of Tkachenko I. Arkhipov Y. Collective phenomena in a quasi-classical electron fluid within the interpolational self-consistent method of moments
Tkachenko I. Arkhipov Y. Collective phenomena in a quasi-classical electron fluid within the interpolational self- consistent method of moments
Collective phenomena in a quasi-classical electron fluid within the interpolational self-consistent method of moments
nd the quasi-classical electron fluid within the interpolational self-consistent method of moments
within the interpolational self- so that five consistent method of moments
so that five consistent method of moments
// EPL, 140 (2022) 11001. DOI-
actor; the https://doi.org/10.1209/0295-
5075/ac9156
accuracy of
mics
oise Kangozhin B.R.; Baimuratov
systems for O.A.; Zharmagambetova M.S.;
ted with the Dautov S.S.; Kangozhin D.B.
ned in this
nd the Springer Science and Business
plied to Media Deutschland GmbH.
erference at Studies in Systems, Decision
, Sary-Ozek, and Control Том 399,
nergy Страницы 277 – 290 2022
he Almaty
evel of
nts of the
mentally
nits exceeds
vitching in
rs of control
© 2022, The

			Author(s), under exclusive license to Springer Nature	
			Switzerland AG.	
89.	Fabrication of Flexible Quasi- Interdigitated Back- Contact Perovskite Solar Cells	https://doi.org/10.339 0/en15093056	Perovskites are a promising class of semiconductor materials, which are being studied intensively for their applications in emerging new flexible optoelectronic devices. In this paper, device manufacturing and characterization of quasi-interdigitated back-contact perovskite solar cells fabricated on flexible substrates are studied. The photovoltaic parameters of the prepared flexible quasi-interdigitated back-contact perovskite solar cells (FQIBC PSCs) are obtained for the front-and rear-side illumination options. The dependences of the device's open-circuit potential and short-circuit current on the illumination intensity are investigated to determine the main recombination pathways in the devices. Spectral response analysis of the devices demonstrates that the optical transmission losses can be minimized when FQIBC PSCs are illuminated from the front-side. Optoelectronic simulations are used to rationalize the experimental results. It is determined that the obtained FQIBC PSCs have high surface recombination losses, which hinder the device performance. The findings demonstrate a process for the fabrication of flexible back-contact PSCs and provide some directions for	Parkhomenko H.P., Umatova Z., Dzhumagulova K.N., Jumabekov A.N. // Energies. – 2022. –Vol. 15(9). – P. 3056.
90.	Passivation of perovskite layer surface states with pyridine in flexible and printed perovskite solar cells	https://doi.org/10.108 8/2058-8585/ac8753	device performance improvements. Perovskite solar cells (PSCs), prepared by using solution-processed printing techniques, gained much attention over the past few years and a considerable progress has been achieved in improving the power conversion efficiencies of these devices. Nevertheless, there are still some advancements that can be implemented, especially in terms of passivation of surface defects in the perovskite photoactive layer. Passivation can afford considerable reduction in surface recombination of charge carriers in the photoactive layer and help to obtain devices with better performance. In this work,	Kakimov A.G., Yerlanuly Y., Akhanuly A., Dossayev I.T., Sadirkhanov Z.T., Dzhumagulova K.N., Ng A., Jumabekov A.N. // Flexible and Printed Electronics. – 2022. –Vol. 7(3). – P. 035012.

			poly(3-hexylthiophene-2,5-diyl)-based inks with small amount of pyridine as an additive are used to deposit the hole transport layer and simultaneously passivate the surface defects of the perovskite layer in flexible and printed PSCs. The devices are fabricated on flexible conductive plastic substrates using a slot-die coating method. It is found that 2.5 wt.% pyridine-containing inks for preparing hole transport layer have a positive effect on the performance of resulting PSCs. On average, around 13% improvement in the power conversion efficiency is observed for the devices with passivation as opposed to the reference devices without passivation. The effect of pyridine passivation on the structural and electronic properties of the perovskite layer on a flexible substrate is studied using experimental and analytical techniques, whereas the computer simulation methods are employed to rule out the possible mechanisms for the performance improvements in the devices with passivation. The approach presented here can be useful for developing simplified protocols for printing of flexible PSCs with the passivated perovskite layer and improved device efficiency.	
91.	Bound states of the hydrogen atom in	https://doi.org/10.100 2/ctpp.202200017	In this work, the interaction potential of dense plasma particles, which takes into account the effect of quantum non-	Nuraly A.T., Dzhumagulova K.N. //
	high-density plasmas		locality as well as electronic correlations, was used to solve the Schrödinger equation for the hydrogen atom. Energies of bound states were calculated. The results obtained are in good agreement with the results of other authors.	Contributions to Plasma Physics. – 2022. – P. e202200017.
92.	Performance	https://doi.org/10.101	Back-contact design for the architecture of devices is a	Seitkozhanov Y.S.,
	evaluation of different designs of	6/j.solmat.2021.11142	promising approach to develop high-performance perovskite solar cells. Here, numerical simulation methods are used to	Valagiannopoulos C., Ng A., Dzhumagulova K.N.,
	back-contact	U	investigate device properties of back-contact perovskite solar	Jumabekov A.N. // Solar
	perovskite solar cells		cells (BC-PSCs) with the quasi-interdigitated, flat-	Energy Materials and Solar
			interdigitated, and interdigitated electrode designs. The results	

		T		
			highlight the principal differences in the designs of the	Cells. – 2022. –Vol. 234. – P.
			electrodes and provide an investigation and analysis of the	111426.
			impact of these electrodes on the photovoltaic properties of	
			their BC-PSCs. The effect of the perovskite photoactive layer	
			electronic properties on the performance of BC-PSCs is also	
			investigated. It is revealed that while BC-PSCs with the quasi-	
			interdigitated electrode design can potentially produce power	
			conversion efficiencies (PCEs) well above 25 %, BC-PSCs	
			with the flat-interdigitated and interdigitated electrode designs	
			are more tolerant to electronic imperfections in the perovskite	
			layer and can produce PCEs higher than those in devices with	
			the quasi-interdigitated electrode design. Manufacturing and	
			prospective use of electrodes with the quasi-interdigitated,	
			flat-interdigitated, and interdigitated designs in developing	
			BC-PSCs are discussed from the experimental standpoint.	
93.	On the survival of	https://doi.org/10.109	We consider a mechanism for the deposition of dust grains on	Lyubov I Shestakova, Akmaral
	dust grains in the	3/mnras/stac1405	to the surface of cold white dwarfs (WDs). Calculations show	I Kenzhebekova, Aleksander V
	sublimation zone of		that grains can fall on to a cold WD directly, without reaching	Serebryanskiy, On survival of
	cold white dwarfs		the phase of complete evaporation, if the parent bodies and the	dust grains in the sublimation
			grains orbit on elongated, close to parabolic, orbits. To this	zone of cold white
			end, we calculated the dynamics of evaporating silicate and	dwarfs, Monthly Notices of the
			graphite dust grains moving in circular and parabolic orbits	Royal Astronomical Society,
			around the white dwarf WD J1644–0449 with Teff ≈ 3830 K	Volume 514, Issue 1, July 2022,
			and $M \star = 0.45 \mathrm{M}\odot$. The calculations accounted for the	Pages 997–
			influence of radiation pressure and Poynting–Robertson drag	1005, https://doi.org/10.1093/m
			on the grain dynamics. The results show that silicate grains of	nras/stac1405
			all sizes considered that leave the parent bodies on circular	
			orbits evaporate completely at a distance of ∼3 stellar radii	
			$(R\star)$ from the star. The boundary of the dust-free zone for	
			graphite grains is closer to the star, $\sim 1.5 R \star$, and is represented	
			confidently only for larger grains with radius > 0.5 \${\mu	
			m}\$. We determined the lower limits of the radius for grains	
			capable of reaching the stellar surface. For comparison, we	

94.	Coulomb logarithm and the Dreicer field in a dense semiclassical plasma	https://doi.org/10.100 2/ctpp.202200014	analysed the dependences of lower size limits for infalling silicate grains for a set of WDs within the temperature range 3000–5000 K. We conclude that silicate grains with an initial size ≥ 300 \${\mu m}\$ can reach the surface of WD J1644–0449. For stars with temperatures in the range 3000–5000 K, the corresponding grain size range is 0.016 µm−5 cm. We obtained an expression for the Coulomb logarithm for a dense semiclassical plasma based on momentum transport cross sections using an effective interaction potential. It was shown that for densities and temperatures corresponding to the dense semiclassical plasma our results are in good agreement with MD simulations. We applied the Coulomb logarithm for the calculation of the Dreicer field. The case of dense non-thermal Lorentzian semiclassical plasma was	Seisembayeva M.M., Reinholz H., Jumagulov M.N., Dzhumagulova K.N. // Contributions to Plasma Physics. – 2022. – P. e202200014.
95.	Study of bound and resonance states of 11Be in breakup reaction	10.32523/ejpfm.2022 060301	considered, too. We investigate the Coulomb breakup of the ¹¹ Be halo nuclei on a lead target within non-perturbative time-dependent approach in a wide range of beam energy (5–70 MeV/nucleon) including the low-lying resonances in different partial and spin states of ¹¹ Be. We have found considerable contribution of the low-lying resonances (5/2+, 3/2- and 3/2+) to the breakup cross section of ¹¹ Be. The obtained results are in good agreement with existing experimental data at 69 MeV/nucleon. The developed computational scheme opens new possibilities in investigation of Coulomb, as well as nuclear, breakup of other halo nuclei on heavy, as well as, light targets. © 2022, Eurasian Journal of Physics and Functional Materials. All Rights Reserved.	Valiolda, D.S., Janseitov, D.M., Melezhik, V.S., Study of bound and resonance states of 11Be in breakup reaction, Eurasian Journal of Physics and Functional Materials, Volume 6, Issue 3, Pages 165 – 173, 10.32523/ejpfm.2022060301
96.	Study of Nuclear Contribution to Breakup Cross Section of 11Be Halo Nuclei within	10.1134/S154747712 2050442	Abstract: In this work, the influence of nuclear interaction to the Coulomb breakup of one-neutron halo nuclei on a heavy target has been studied within the non-perturbative time-dependent approach for low beam energies (5–30 MeV/nucleon) including the low-lying resonances in different	Valiolda, D.S., Janseitov, D.M., Melezhik, V.S., Study of Nuclear Contribution to Breakup Cross Section of 11Be Halo Nuclei within Time-

	Time-Dependent Approach		partial and spin states of 11 ^{Be} . Overall, this numerical technique allows an accurate and straightforward modeling of the nuclear interaction between the projectile and the target on a widely range of the beam energies. Our calculations can be potentially useful for exploring the halo structure in breakup reactions with low beam energies. © 2022,	Dependent Approach, Physics of Particles and Nuclei Letters, Volume 19, Issue 5, Pages 477 – 480 October 2022, 10.1134/S1547477122050442.
97.	QCD Effects in Non-QCD Theories	10.1007/s10701-022- 00642-1	Pleiades Publishing, Ltd. It is shown that, in some non-QCD theories, there are effects shared by QCD: (i) in SU(2) Yang–Mills theory containing a nonlinear spinor field, there is a mass gap; (ii) in SU(3) Proca–Higgs theory, there are flux tube solutions with a longitudinal electric field required for producing a force binding quarks; (iii) in non-Abelian Proca–Higgs theories, there exist flux tube solutions with a momentum directed along the tube axis and particlelike solutions with a nonvanishing total angular momentum created by crossed color electric and magnetic fields; in QCD, such configurations may contribute to the proton spin. We discuss the conjecture that such non-QCD theories might be a consequence of approximate solution of an infinite set of Dyson–Schwinger equations describing the procedure of	Dzhunushaliev, V., Folomeev, V., QCD Effects in Non-QCD Theories, Foundations of Physics, Volume 52, Issue 6December 2022 Article number 118, 10.1007/s10701-022-00642-1.
98.	Irradiation capsule design for neutron coloration of topaz in a WWR-K reactor	10.1016/j.apradiso.20 22.110472	nonperturbative quantization. The phenomenon of dimensional transmutation for nonperturbative quantization and the analogy between nonperturbative quantization and turbulence modeling are also discussed. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. This study justifies irradiation capsule design calculations used for efficient coloring of topaz in a WWR-K reactor. Various radiation screens used for removing thermal and epithermal neutrons and their influence on the activation of	Akhanov A.M., Aitkulov M.T., Sairanbayev D.S., Gizatulin, Sh.Kh., Romanova N.K., Shaimerdenov A.A., Chikhray
	in a www-K reactor		the main impurities in topaz are considered. Neutron analysis has been performed by means MCNP transport code. It is	Y.V., Ualzhanov, Zh., Zholdybayev T.K., Irradiation

			shown that the use of a sandwich screen composed of boron carbide and tantalum decreases the fraction of thermal neutrons by 24% and increases the fraction of fast neutrons by 15%. These are the optimal neutron conditions for topaz irradiation in a WWR-K reactor. Thermal analysis has been performed by means Comsol code and two approaches were taken: conservative and realistic. A thermophysical analysis with a conservative approach showed that for boron carbide and tantalum screen the temperatures under forced and natural convection modes were 134°C and 274°C, respectively. The temperature of the case body was 75 °C with forced cooling and 238 °C without cooling. In case of realistic approach, the topaz temperature does not exceed 65°C if regular cooling of the irradiation capsule is ensured. Calculation results showed the importance of the ensure circulation between topaz during irradiation, which makes it possible to reduce the temperature of topaz by almost half.	capsule design for neutron coloration of topaz in a WWR-K reactor, Applied Radiation and Isotopes, Volume 190December 2022 Article number 110472, 10.1016/j.apradiso.2022.110472
99.	Analysis of the reactor experiments results on the study of gas evolution from two-phase Li2TiO3-Li4SiO4 lithium ceramics	10.1016/j.nme.2022.1 01132	This paper analyzes part of the reactor experiments on the study of tritium and helium release from promising two-phase lithium ceramic (Li ₂ TiO ₃ and Li ₄ SiO ₄) of natural lithium enrichment conducted by vacuum extraction. The basis for such an analysis was a more careful study of the time trend of pressure changes of gases in the chamber with the test samples. In a particular case, it was clearly shown that the pressure fluctuations observed during irradiation for gases with mass number M4 (to which both HT and He molecules correspond) are determined only by He, which leaves the intergranular regions of the ceramic through open channels or cracks. The kinetics of changes in the amount of helium that is released during irradiation was traced and both the rate of helium release and the frequency of emissions were determined. It was assumed that the observed emissions correspond to a certain "formation of free paths" from the	Kenzhina, I., Kulsartov, T., Knitter, R., Chikhray Yevgen, Tolenova, A., Nesterov, E., Analysis of the reactor experiments results on the study of gas evolution from two-phase Li2TiO3-Li4SiO4 lithium ceramics, Nuclear Materials and Energy, Volume 30March 2022 Article number 101132, 10.1016/j.nme.2022.101132

			internal cavities of the irradiated ceramics into the chamber of	
			the facility. The data obtained for the helium emissions were	
			compared with the release of tritium-containing molecules	
			from the ceramics. The quasi-equilibrium levels of the release	
			of tritium-containing molecules and their dependence on	
			the reactor power were estimated. The release of helium and	
			tritium was compared with the calculated values of the tritium	
			generation rate in the test sample.	
100.	Studies of two-phase	10.1016/j.nme.2022.1	This work presents the preliminary experimental data on	Kulsartov, T., Zaurbekova, Z.,
	lithium ceramics	01129	the study of gas release from two-	Knitter, R., Chikhray, Y.,
	Li4SiO4-		phase lithium ceramics Li ₄ SiO ₄ -	Gordienko, Y., Ponkratov, Y.,
	Li2TiO3 under		Li ₂ TiO ₃ under neutron irradiation conditions. Experiments	Studies of two-phase lithium
	conditions of		were carried out at the WWR-K research reactor (Almaty,	ceramics Li4SiO4-
	neutron irradiation		Kazakhstan) for ~4.3 days. The total neutron fluence during	Li2TiO3 under conditions of
			the irradiation was $\sim 1.8 \cdot 10^{19} \text{n/cm}^2$. In the course	neutron irradiation, Nuclear
			of irradiation, two experiments on ceramics heating	Materials and Energy, Volume
			during irradiation and two experiments with hydrogen	30March 2022 Article number
			isotopes (H_2 and D_2) supply into the experimental chamber	101129,
			with the sample were performed at a temperature of 680 °C	10.1016/j.nme.2022.101129
			and reactor power of 6 MW. During the entire irradiation, the	
			gas composition in the continuously evacuated ampoule	
			device with samples was recorded. The obtained dependences	
			of the release of tritium-containing molecules and helium	
			during the experiment were qualitatively analyzed.	
101.	Investigation of	10.1016/j.nme.2022.1	In the development of fusion energy, an important task is the	Kulsartov, T., Kenzhin, Y.,
101.	hydrogen and	01115	study and improvement of tritium production technologies. In	Knitter, R., Chikhray, Y.,
	deuterium impact on	01113	this case, one of the most promising materials	Gordienko, Y., Ponkratov, Y.,
	the release of tritium		for tritium generation is lithium ceramics. Considering the	Investigation of hydrogen and
	from two-phase		importance of the task, numerous studies are aimed at solving	deuterium impact on the release
	lithium ceramics			<u> </u>
			the problem of determining the parameters and mechanisms	of tritium from two-phase lithium ceramics under reactor
	under reactor		of tritium release in lithium-containing materials. This paper	
	irradiation		presents the results of a study of tritium release processes	irradiation, Nuclear Materials
			from two-phase lithium ceramics of	and Energy, Volume 30March

		1	T' G'O T' TE'O 1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	2022 4 .: 1 1 101117
			Li ₄ SiO ₄ /Li ₂ TiO ₃ during reactor irradiation when hydrogen an	2022 Article number 101115,
			d deuterium are injected into the chamber with irradiated	10.1016/j.nme.2022.101115
			samples. The mechanisms regularities of the tritium yield	
			process in the presence of these isotopes were established.	
			The experiments were carried out in the WWR-K	
			research reactor at a neutron flux density of 5·10 ¹³ n/cm ² ·s and	
			sample temperatures from 650 to 700 °C.	
102.	Analysis of reactor	10.1016/j.ijhydene.20	To date, there have been many studies on the possibility of	Askerbekov, S., Kenzhina, I.,
	experiments to study	21.03.163	using lithium CPS as a plasma-facing material in fusion	Kulsartov, T., Chikhray, Y.,
	the transfer		reactors. For use such liquid-lithium systems in fusion	Kadyrzhanov, K., Nesterov, E.,
	processes of		reactors, it is necessary to determine the interaction	Analysis of reactor experiments
	generated tritium in		parameters of the surface facing the plasma with the working	to study the transfer processes
	lithium cps		gases under conditions simulating the real operation of the	of generated tritium in lithium
	(capillary-porous		facility, i.e. under conditions of neutron and gamma radiation.	cps (capillary-porous system),
	system)		Therefore, this paper is devoted to the study of	International Journal of
			the processes of hydrogen isotopes interaction	Hydrogen Energy, Volume 47,
			with lithium CPS under reactor irradiation.	Issue 11, Pages 7368 - 73785
			The experiments presented in work were carried out at the	February 2022,
			IVG1.M research reactor by using dynamic sorption method	10.1016/j.ijhydene.2021.03.163
			with the presence of deuterium under the lithium CPS sample.	
			The results of reactor experiments simulation, in particular,	
			the distribution of tritium concentration in lithium volume and	
			traps, and the flows of tritium released through the inner	
			surface of the CPS into the experimental chamber at different	
			temperatures are presented. Based on the simulation results,	
			the following interaction parameters	
			of tritium with lithium were determined: temperature	
			dependences of tritium capture constant by lithium and the	
			dissociation constant of LiT. The obtained model can be	
			applied for analysis of tritium generation and release from	
			different lithium-containing materials used as a filling	
			of CPS structure (for example, lithium and tin-lithium	
			eutectics).	
L	1		1	

103.	Optical studies of thin films of cryocondensed mixtures of water and admixture of nitrogen and argon	10.3390/ma15217441	The interaction of host molecules with water molecules is of primary importance in astrophysical and atmospheric studies. Water-binding interactions continue to attract a broad interest in various fields, especially those related to the formation of assembly structures. Using the physical vapor deposition (PVD) method and a two-beam interferometer with a wavelength of 406 nm, the refractive indices of thin films of a water and nitrogen (argon) mixture were calculated in the range from 15 to 35 K. The results of temperature transformations of the obtained films from a two-beam interferometer, and thermal desorption characteristics from the temperature of condensation to the temperature of evaporation of water (15–180 K), are presented. The relationship between the signal of the interferometer, the refractive index, and	Sokolov, D.Y., Yerezhep, D., Vorobyova, O., Ramos, M.A., Shinbayeva, A., Optical studies of thin films of cryocondensed mixtures of water and admixture of nitrogen and argon, Materials, Volume 15, Issue 21November 2022 Article number 7441, 10.3390/ma15217441
			the film thickness during glass transition is demonstrated.	
104.	Radiation-stimulated absorption processes on the surface of beryllium oxide	10.15826/chimtech.20 22.9.1.06	The paper presents the study results of photo and gamma radiation effect on the beryllium oxide (BeO) surface properties. Photoadsorption studies of O2 on BeO by the methods of infrared (IR) spectroscopy and manometry with a change in the temperature of preliminary annealing from 473 to 1073 K show that samples subjected to preliminary training at 473 K are most active. The maximum of adsorption activity on γ-irradiated beryllium oxide is observed on the samples annealed at 673 K before the irradiation. The maximum of paramagnetic centers (PMCs) is also observed on samples annealed at this temperature. Comparison of electron paramagnetic resonance (EPR) and adsorption studies shows that absorption of H2 and O2 leads to the destruction of paramagnetic centers. It is assumed that, upon irradiation, adsorption centers with electron and hole modes are formed on the surface of BeO.	Tusseyev, T.T., Danlybaeva, A.K., Raimkul, S.S., Kiykabaeva, A.A., Doszhanov, O.M., Radiation-stimulated absorption processes on the surface of beryllium oxide, Chimica Techno Acta, Volume 9, Issue 12022 Article number 20229106, 10.15826/ch imtech.2022.9.1.06

105.	A joint hydrogen and syngas chemical kinetic model optimized by particle swarm optimization	10.1016/j.fuel.2022.1 25945	In this work, we propose a novel data-driven framework for detailed kinetic mechanisms optimization applying the heuristic algorithm, namely canonic Particle Swarm Optimization (PSO). The PSO is more effective and robust in coping with uncertainties and incomplete information than deterministic and probabilistic optimization algorithms and is more suitable for machine learning applications. In the proposed framework, to avoid trapping in a local minimum, 1000 local optimums have been obtained and statistically handled to select the final feasible model parameter set with reduced uncertainty intervals and parameter correlations. The developed framework was successfully used for the optimization of the joint H ₂ and syngas oxidation chemical kinetic model. The data set collected for the model optimization includes 41 reactions and 16 species, and 3000 experimental data targets supplied with uncertainty boundaries measured in shock tubes, jet stirred reactors, plug flow reactors, and premixed laminar flames under wide ranges of temperature, pressure, equivalence ratio, and H ₂ /CO ratios. The initially estimated uncertainties of the reaction rate constants for 15 key reactions were significantly constrained. The reaction rate constants for the H ₂ oxidation sub-model were re-optimized and their	Wang, H., Sun, C., Haidn, O., Askarova, A., Manfletti, C., Slavinskaya, N., A joint hydrogen and syngas chemical kinetic model optimized by particle swarm optimization, Fuel, Volume 33215 January 2023 Article number 125945, 10.1016/j.fuel.2022.125945
106.	Simulation of	10.1615/HeatTransRe	uncertainties were further reduced. Numerical simulation of the concentration convection that	Zhakebayev, D., Fedorenko, O.,
100.	concentration convection in an inclined channel	s.2022043133	occurs in a three-component gas mixture He + Ar – N ₂ in an inclined channel has been carried out. To describe the occurrence of convective flows in the mixture under consideration, a 3D numerical algorithm based on the D3Q19 model of the Boltzmann lattice equation method has been developed. It is shown that when the slope angle changes in the range from 40° to 80°, the isoconcentration lines are curved, which indicates the presence of convective	Kossov, V., Zhumali, A., Mukamedenkyzy, V., Karuna, O., Simulation of concentration convection in an inclined channel, Heat Transfer Research, Volume 53, Issue 15, Pages 39 – 522022,

		Ī	mechanisms in the total mass transfer. It is shown that at an	10.1615/HeatTransRes.2022043
			inclination angle of 60°, the intensity of convective transfer is	133
107	0 1	10.2200/ 1 11210	maximum.	T 1 NIM AL 1 II 1' 1
107.	Open Lesson as a	10.3390/educsci1210	Open lesson (OL), similar to the Japanese lesson study in	Japashov N.M, Abdulbakioglu,
	Means of Teachers'	0692	many aspects, is a professional development model regularly	M., Kolushpayeva, A., Balta,
	Learning		used in schools in the Commonwealth of Independent States	N., Bae, C.L., Open Lesson as
			Countries. The purpose of this study was to	a Means of Teachers' Learning,
			examine teachers' and students' attitudes and beliefs about	Education Sciences, Volume 12,
			OL practices and activities, using both quantitative and	Issue 10October 2022 Article
			qualitative methods. The sample consisted of 72 instructors	number 692,
			and 239 university students in Kazakhstan. MANOVA results	10.3390/educsci12100692
			from teacher data and student data indicated weak positive	
			attitudes and beliefs about OL. Moreover, no differences were	
			found between the gender, discipline, nationality, and	
			teaching experience of teachers, while students learning social	
			sciences showed stronger positive attitudes and beliefs about	
			the effect of OL on learning when compared to	
			students learning natural sciences. Slightly positive attitudes	
			and beliefs of participants imply that OL implementations in	
			schools should be reconsidered.	
108.	Middle- and	10.1002/sce.21776	Despite pervasive educational	Japashov N.M, Balta,
	secondary-school		efforts, student interest in STEM careers continues to	N., Mansurova, A., Oliveira,
	students' STEM		decline in many countries. The present study seeks to better	A.W., Lathrop, R., Middle- and
	career interest and its		understand this phenomenon by examining how internal	secondary-school students'
	relationship to		factors (gender) and external factors	STEM career interest and its
	gender, grades, and		(school grades, grade level, family size) relate to	relationship to gender, grades,
	family size in		Kazakh students' STEM career interests. To this end, a newly	and family size in Kazakhstan,
	Kazakhstan		developed instrument (STEM Career Interest Survey) based	Science Education,
			on social cognitive career theory was used to	10.1002/sce.21776
			assess interest in STEM careers among middle-	1011002,000.21770
			and secondary students in Kazakhstan. The survey was	
			completed by a sample of 396 Kazakh students in grades 7 to	
			12. Our statistical analyses revealed that (1)	
			12. Our statistical analyses revealed that (1)	

in,
rzaeian,
ode
Cobalt
Hybrid
ions,
12,
rticle
Ii f (or ati

			temperature recovery causes the transformation of the Co ₃ O ₄ nanocrystalline phase into the CoO phase. For the same reason, a rapid reverse transformation of CoO into	
			Co ₃ O ₄ occurs during in situ oxidation. This recrystallization	
			enhances the electrochemical activity of the surface	
			of nanoparticles, where a high concentration of oxygen	
			vacancies is observed in the resulting Co ₃ O ₄ phase.	
			Thus, a simple method of modifying nanocrystalline	
			Co ₃ O ₄ electrodes provides much-improved	
			pseudocapacitance characteristics.	
110.	Synthesis and	10.31489/2022Ch3/3-	Ternary composites of polyaniline/Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ /carbonyl	Meirambekuly, N., Temirbayev,
	Microwave	22-8	iron (PANI/F/CI) are prepared via two stages. Firstly,	A.A., Zhanabaev,
	Absorption		Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ is prepared using a sol-gel method. After	Z.Z., Khaniyev,
	Properties of		that, PANI/F/CI composites are prepared using an in-situ	B.A., Khaniyeva, A.K.,
	Ni0.5Zn0.5Fe2O4/C		polymerization technique of PANI in the existence of the	Synthesis and Microwave
	I Composite Coated		Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ and CI. X-ray diffractometry (XRD), Fourier	Absorption Properties of
	with Polyaniline		transform infrared (FTIR) spectroscopy, Ultraviolet-visible	Ni0.5Zn0.5Fe2O4/CI
	within Paraffin Wax		(UV-vis) spectroscopy, and Thermogravimetric analysis	Composite Coated with
	Matrix		(TGA) are utilized to characterize samples. The morphology	Polyaniline within Paraffin Wax
			of the powders is investigated by Scanning electron	Matrix, Bulletin of the
			microscope (SEM). The electromagnetic interference (EMI)	Karaganda University
			shielding and microwave absorption (MA) properties are	Chemistry Series, Volume 107,
			measured in the frequency band of 8.8–12 GHz to investigate	Issue 3, Pages 254 – 266,
			the microwave characterization. The results refer	10.31489/2022Ch3/3-22-8
			those microwave absorption properties are related to the	
			absorber thickness and the loading ratio of the absorber within	
			a paraffin matrix. Minimal reflection loss of –30.8 dB at the	
			matching frequency (f _m) of 10.3 GHz and	
			the absorption bandwidth under –10 dB (BW _{–10dB}) of 2.8 GHz	
			for 3.4 mm thickness with a surface density (SD) of 3.38	
			kg/m ² are noticed for the PANI/F/CI composite sample. The	
			maximum shielding efficiency (SE) of 30.12 dB at 11.0 GHz	

			for 3.2 mm thickness is observed for the	
111		10.0000/ 1700=000	PANI/F/CI composite sample.	
111.	Growth and Liquid-	10.3390/ma15207080	In recent years, interest in the liquid-phase exfoliation (LPE)	Aitzhanov, M., Guseinov,
	Phase Exfoliation of		of layered crystals has been growing due to the efficiency and	N., Nemkayeva, R., Prikhodko,
	GaSe1-xSx Crystals		scalability of the method, as well as the wide range of	O., Mukhametkarimov, Y.,
			practical applications of the obtained dispersions based on	Growth and Liquid-Phase
			two-dimensional flakes. In this paper, we present a	Exfoliation of GaSe1-xSx
			comparative study of as-grown and liquid-phase exfoliated	Crystals, Materials, Volume 15,
			$GaSe_{1-x}S_x$ flakes. Bulk $GaSe_{1-x}S_x$ crystals with $x \sim 0$, 0.25,	Issue 20October 2022 Article
			0.5, 0.75, 1 were synthesized by melting stoichiometric	number 7080,
			amounts of gallium, selenium, and sulfur particles in	10.3390/ma15207080
			evacuated ampoules. X-ray diffraction analysis showed that	
			the crystal structure does not change considerably after LPE,	
			while the analysis of the Raman spectra revealed that, after	
			liquid-phase processing in IPA, an additional peak associated	
			with amorphous selenium is observed in selenium-rich GaSeS	
			compounds. Nevertheless, the direct and indirect transition	
			energies determined from the Kubelka-Munk function for	
			LPE crystals correlate with the band gap of the as-grown bulk	
			GaSeS crystals. This finding is also confirmed by comparison	
			with the data on the positions of the photoluminescence peak.	
112.	Preparation and	10.1007/s13204-022-	Hybrid nanopowder based on silicon nanoparticles (Si	Mussabek, G., Zhylkybayeva,
	characterization of	02681-6	NPs) decorated with carbon NPs was prepared by high-	N., Baktygerey, S., Zaderko,
	hybrid nanopowder		temperature treatment of the oxidized surface of porous Si	A.N., Lisnyak, V.V.,
	based on nanosilicon		NPs impregnated with a carbonaceous precursor. The Si	Preparation and characterization
	decorated with		NPs decorated by carbon NPs	of hybrid nanopowder based on
	carbon		and carbon nanostructures (CNs) were studied with TEM. The	nanosilicon decorated with
	nanostructures		surface chemistry for hybrid NPs was characterized by the	carbon nanostructures, Applied
			TPD MS method, and carboxyl, lactone, and phenol groups	Nanoscience (Switzerland),
			were found. The CNs and carbon NPs influence the electric	10.1007/s13204-022-02681-6
			response of a sandwich structure that was prepared using	10.1007/01020 . 022 02001 0
			the hybrid NPs modified with palladium NPs and then	
			was tested to measure the concentration of hydrogen in	
			was tested to measure the concentration of flydrogen in	

			nitus can bridge can accoming the condenials of the second	
			nitrogen-hydrogen gas mixtures. The sandwich structure	
			showed reasonable stability of the electrical response,	
			presumably due to the formation of a specific sensitive layer.	
113.	Influence of Si	10.1016/j.jnoncrysol.	The paper considers the effect of silicon on the formation of	Ryaguzov, A., Kudabayeva,
	atoms on the	2022.121956	the structure and properties of amorphous diamond-like	M., Myrzabekova,
	structure and		carbon (DLC) films. Thin films of silicon-	M., Nemkayeva, R., Guseinov,
	electronic properties		modified amorphous diamond-like carbon (DLC:Si) were	N., Influence of Si atoms on the
	of amorphous DLC		synthesized by magnetron ion-plasma co-sputtering of a	structure and electronic
	films		combined target. Studies of	properties of amorphous DLC
			the structure and properties of amorphous DLC:Si films were	films, Journal of Non-
			carried out in the range of silicon concentrations up to 6.75	Crystalline Solids, Volume
			at.%. A change in the formation of the film structure is shown	5991 January 2023 Article
			using atomic force microscopy (AFM) and transmission	number 121956, 10.1016/j.jnon
			electron microscopy (TEM). Raman spectroscopy (RS) and	crysol.2022.121956
			X-ray photoelectron spectroscopy (XPS) revealed a	
			significant change in the	
			local structure of amorphous DLC:Si films. Which, in turn,	
			leads to a change in the density of states of π -electrons in the	
			band and, as a rule, to a change in the electronic properties.	
114.	Perovskite-Based	10.18321/ectj1436	The fundamental aspects of the perovskite absorber formation	Ashurov, N., Oksengendler,
	Solar Cells: Some		of solar irradiation for two generally accepted one-and two-	B., Maksimov, S., Yar-
	Problems and Ways		step technologies are considered. For the on-step variant, two	Mukhamedova,
	of their Solution		stages of perovskite formation, called "through solution" and	G., Zhamanbayeva, G.,
			"intermediate colloid compounds of precursors", were	Perovskite-Based Solar Cells:
			identified. The successive deposition of precursors is	Some Problems and Ways of
			described in terms of thermodynamics and the Ostwald	their Solution, Eurasian
			ripening model. The optimal conditions for the concentration	Chemico-Technological
			and temperature for the spinning solution of	Journal, Volume 24, Issue 3,
			methylammonium iodide to obtain various sizes of perovskite	Pages 229 - 23910 October
			crystallites are presented. Examples are given for some other	2022, 10.18321/ectj1436
			approaches that are used in the formation of high-quality	,
			perovskite films with high optoelectronic characteristics for a	
			conversion rate of perovskite based solar cells on them.	
L	1		Ton. Tillon fact of pero (billie caused bottal cells on thell).	